版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
學(xué)習(xí)這門課可以帶給我們
什么樣的認識?熱學(xué)的由來以及對人類生活的改變:熱學(xué)的內(nèi)容學(xué)習(xí)方法學(xué)習(xí)時間安排及推薦書目
熱物理學(xué)(thermalphysics)是研究有關(guān)物質(zhì)熱運動以及與熱現(xiàn)象的科學(xué)。甲骨文:熱手持火把甲骨文:火青銅器
鉆木取火火的利用
熱學(xué)的發(fā)展歷史伽利略空氣溫度計(16世紀)收縮、凝固與冷的物質(zhì)接觸
與熱的物質(zhì)接觸膨脹、蒸發(fā)、熔化熱脹冷縮——測溫技術(shù)這個時期累積了大量的實驗和觀察結(jié)果,并制造出了蒸汽機,對熱的本質(zhì)展開了研究和爭論,為熱力學(xué)理論的建立做好了準備。十七世紀末到十九世紀中葉熱學(xué)的萌芽期瓦特早期蒸汽機從十八世紀開始,熱機發(fā)展極大的促進了熱學(xué)的發(fā)展。首先德國斯塔爾(GeorgErnstStahl1660-1734)教授提出熱是一種燃素,后來荷蘭波哈維(HermannBoerhaave)教授甚至說熱是一種物質(zhì)。雖然熱是一種物質(zhì)的說法不正確,但波哈維教授把華氏40度的冷水與同質(zhì)量華氏80度的熱水相混而得華氏60度的水,卻隱約地得到熱量守恒的一個簡單定則;不過對于不同質(zhì)量,甚至不同物質(zhì)的冷熱物體的混合,他就難以解釋了。“熱”本質(zhì)的爭論人們長久以來對溫度和熱量的概念混淆不清多數(shù)人以為物體冷熱的程度代表著物體所含熱的多寡。1714年華倫海特改良溫度計,建立華氏溫標,從此熱學(xué)走上了實驗科學(xué)的道路。1740年左右,俄國圣彼得堡科學(xué)院院士克拉夫特(BaronRichardvonKrafft-Ebing)提出冷水、熱水混合的公式。
1750年由德國移民到圣彼得堡的理奇蒙(Richmann)院士也做了一系列熱量的研究,他將不同溫度的水混合,研究熱量的損失,并改進克拉夫特的公式。此公式雖不正確,但他卻指出混合前后,熱量要相等的概念。1755年布萊克發(fā)明發(fā)明冰量熱器,并將溫度和熱量區(qū)分為兩個概念。
1789年出生于美國后到英國又到德國而受封的倫福伯爵(CountRumford)(原名BenjaminThompson)在慕尼黑兵工廠監(jiān)督大炮鉆孔,發(fā)現(xiàn)熱是因摩擦而產(chǎn)生,因而斷言,熱不是物質(zhì)而是來自運動。另一類的人如虎克,認為熱是物質(zhì)各部分激烈的運動,牛頓也認為熱是粒子的運動。1799年英國化學(xué)家,即后來的首任皇家研究院院長戴維(SirHumphryDavy)在維持冰點的真空容器中進行摩擦的實驗,發(fā)現(xiàn)即使是兩塊冰相互摩擦也有些冰熔化成水,所以他認為摩擦引起物體微粒的振動,而這種振動就是熱。十九世紀中到十九世紀七○年代末這個時期發(fā)展了熱力學(xué)和分子動理論,這些理論的誕生與熱功當量原理有關(guān)。熱功相當原理奠定了熱力學(xué)第一定律的基礎(chǔ),而第一定律和卡諾理論結(jié)合,又導(dǎo)致熱力學(xué)第二定律的形成;熱功相當原理跟微粒說結(jié)合則導(dǎo)致了分子運動論的建立。另一方面,以牛頓力學(xué)為基礎(chǔ)的氣體動理論也開始發(fā)展。焦耳奠定熱力學(xué)基礎(chǔ)英國物理學(xué)家焦耳奠定了能量守恒定律,為熱力學(xué)的發(fā)展確立基礎(chǔ)。他是第一位研究熱能、機械能與電能的相互關(guān)系的科學(xué)家,也是第一位發(fā)現(xiàn)氣體自由膨脹時四周溫度會隨之下降的科學(xué)家。第一位把熱力學(xué)第一定律用數(shù)學(xué)形式表達出來的人接著又提出熱力學(xué)第二定律1854年首次引入熵的概念,1865年發(fā)現(xiàn)熵增加原理1851年第一次運用統(tǒng)計概念導(dǎo)出氣體的壓力公式1858年又引進自由程概念,導(dǎo)出了平均自由程公式克勞修斯(Rudolph
Clausius,1822~1888)德國物理學(xué)家,氣體動力論和熱力學(xué)的主要奠基人之一。
英國物理學(xué)家,又稱為熱力學(xué)之父。1848年提出熱力學(xué)溫標,是現(xiàn)代科學(xué)上的標準溫標,這個溫標的特點是它完全不依賴于任何特殊物質(zhì)的物理性質(zhì),絕對溫度K就來自于他姓氏的縮寫。提出熱力學(xué)第二定律開爾文表述,揭示能量耗散是自然界的普遍趨勢。發(fā)現(xiàn)了焦耳-湯姆孫效應(yīng),即氣體經(jīng)多孔塞絕熱膨脹后所引起的溫度的變化現(xiàn)象。這一發(fā)現(xiàn)成為獲得低溫的主要方法之一。威廉?湯姆遜(WilliamThomson),開爾文爵士(1824~1907)麥克斯韋(JamesClerkMaxwell1831~1879)偉大的英國物理學(xué)家,經(jīng)典電磁理論的創(chuàng)始人,氣體動力理論創(chuàng)始人之一。1859年用統(tǒng)計方法得出理想氣體的速度(率)分布律,從而找到了用微觀量求宏觀量的方法。玻爾茲曼
(LudwigEdwardBoltzmann1844.-1906),奧地利物理學(xué)家,熱力學(xué)和統(tǒng)計物理學(xué)的奠基人之一發(fā)展了麥克斯韋的氣體動理論,給出體系的熵和概率的聯(lián)系,闡明了熱力學(xué)第二定律統(tǒng)計意義,并引出能量均分理論,以及麥克斯韋-波爾茲曼分布。熵可以定義為玻爾茲曼常數(shù)乘以系統(tǒng)分子的狀態(tài)數(shù)的對數(shù)值:S=k㏑Ω熱力學(xué)的一個基本常量k=R/NA
1.38
10-23J
K-1
二十世紀三○年代至今這個時期主要是由于量子力學(xué)的引進而建立了量子統(tǒng)計力學(xué),同時非平衡態(tài)理論也有更進一步的發(fā)展,形成了近代理論與實驗物理學(xué)中最重要的一環(huán)?!?.1宏觀描述方法與微觀描述方法
熱物理學(xué)(thermalphysics)是研究有關(guān)物質(zhì)熱運動以及與熱現(xiàn)象的科學(xué)。一熱學(xué)的研究對象及其特點熱現(xiàn)象:與溫度有關(guān)的物理性質(zhì)的變化現(xiàn)象。
物質(zhì)的熱狀態(tài)跟大量分子的無規(guī)則運動有密切關(guān)系。
跟物體在空間的位置和速度都沒有關(guān)系,而是由物體內(nèi)部的因素所決定的。
每個單獨分子的運動并不能產(chǎn)生熱現(xiàn)象;有了很多的分子,還是不見得產(chǎn)生熱現(xiàn)象;必須很多的分子做無規(guī)則的混亂運動,才能產(chǎn)生熱現(xiàn)象;熱學(xué)研究的是大量微觀粒子的無規(guī)則運動。熱現(xiàn)象的特點熱是一種比機械運動更復(fù)雜的運動形式。
宏觀量:從整體上描述系統(tǒng)的狀態(tài)量,一般可以直接測量。如M、V、E
等----可以累加,稱為廣延量。
P、T
等----不可累加,稱為強度量。微觀量:描述系統(tǒng)內(nèi)微觀粒子的物理量。
如分子的質(zhì)量m、直徑d、速率、動量、動能
等。微觀量與宏觀量有一定的內(nèi)在聯(lián)系。例如,氣體的壓強是大量分子撞擊器壁的平均效果,它與大量分子對器壁的沖力的平均值有關(guān)。宏觀量與微觀量
二、熱學(xué)研究的方法
宏觀描述方法+微觀描述方法熱力學(xué)(宏觀理論)
統(tǒng)計物理學(xué)(微觀理論)
氣體動理學(xué)理論(統(tǒng)計物理學(xué)的主要內(nèi)容)
21
1、宏觀描述方法:熱力學(xué)方法熱力學(xué):由觀察和實驗總結(jié)出來的熱現(xiàn)象規(guī)律,構(gòu)成熱現(xiàn)象的宏觀理論,叫做熱力學(xué)。以宏觀描述為基礎(chǔ),應(yīng)用能量守恒,根據(jù)經(jīng)驗事實,歸納得出幾個基本定律為出發(fā)點的方法。熱力學(xué)方法的優(yōu)點:熱力學(xué)基本定律是自然界中的普適規(guī)律,具有可靠性與普遍性。與熱運動有關(guān)的任何宏觀系統(tǒng),都遵循熱力學(xué)規(guī)律熱力學(xué)的局限性:3、它把物質(zhì)看成為連續(xù)體,不考慮物質(zhì)的微觀結(jié)構(gòu).1、它只適用于粒子數(shù)很多的宏觀系統(tǒng);2、它主要研究物質(zhì)在平衡態(tài)下的性質(zhì),它不能解答系統(tǒng)如何從非平衡態(tài)進入平衡態(tài)的過程;2.微觀描述方法:統(tǒng)計物理方法統(tǒng)計物理學(xué)則是熱物理學(xué)的微觀描述方法:它從物質(zhì)由大數(shù)分子、原子組成的前提出發(fā),運用統(tǒng)計的方法,把宏觀物質(zhì)看作由微觀粒子熱運動的平均值所決定,由此找出微觀量與宏觀量之間的關(guān)系的方法。
該方法的局限性在于它在數(shù)學(xué)上常遇到很大的困難,由此而作出簡化假設(shè)(微觀模型)后所得到的理論結(jié)果常與實驗不能完全符合。本課程主要討論以下三部分內(nèi)容:注:以后在“熱力學(xué)與統(tǒng)計物理”、“固體物理”等課程中還要對熱物理學(xué)的相關(guān)內(nèi)容作更深入的討論。(3)液體、固體、相變等物性學(xué)方面的基本知識。(1)熱力學(xué)基礎(chǔ);(2)統(tǒng)計物理學(xué)的初步知識(以分子動理論的內(nèi)容為主);25
熱學(xué)內(nèi)容圖析總論熱力學(xué)平衡態(tài)的特征及充要條件熱力學(xué)第零定律、溫度和溫標理想氣體定律和狀態(tài)方程熱學(xué)發(fā)展規(guī)律簡史研究對象及方法熱力學(xué)基礎(chǔ)(宏觀理論)分子動理論(微觀理論)熱學(xué)理論的應(yīng)用(物性學(xué))1、熱力學(xué)第一定律;2、熱力學(xué)第二定律;3、熱機。1、理想氣體微觀描述的初級理論2、理想氣體分子運動的規(guī)律(平衡態(tài));3、理想氣體內(nèi)遷移規(guī)律(非平衡態(tài))。1、實際氣體、液體、固體的基本性質(zhì);2、一級相變特征及基本規(guī)律。物質(zhì)的微觀模型參考書目參考教材:趙凱華等,《熱學(xué)》,高等教育出版社包科達,《熱物理學(xué)基礎(chǔ)》,高等教育出版社李椿等,《熱學(xué)》,高等教育出版社4.顧建中,《熱學(xué)教程》,高等教育出版社5.哈理德等,《物理學(xué)》(第二冊),科學(xué)出版社6.李平,《熱學(xué)》,北京師范大學(xué)出版社學(xué)習(xí)資料:費曼,《費曼物理學(xué)講義》,上??萍汲霭嫔鐒e萊利曼,《趣味物理學(xué)》,湖南教育出版1.教與學(xué)是相互促進的過程,關(guān)于教學(xué)、教材等,要多提寶貴意見附:對同學(xué)的要求課程考核方式及成績評定本課程考核方式為閉卷考試。學(xué)期成績由平時成績和考試成績共同構(gòu)成。
2.我的E-Mail:tclswn@163.com3.按時上課,認真聽講,完成作業(yè),搞好預(yù)習(xí)和復(fù)習(xí)28
§1.2熱力學(xué)系統(tǒng)的平衡態(tài)一、熱力學(xué)系統(tǒng)熱力學(xué)系統(tǒng)(簡稱系統(tǒng)):被確定為研究對象的物體或物體系。孤立系統(tǒng):與外界既不交換物質(zhì)又不交換能量的系統(tǒng).外界:系統(tǒng)邊界外部.封閉系統(tǒng):與外界不交換物質(zhì)但可交換能量的系統(tǒng).開放系統(tǒng):與外界既交換物質(zhì)又交換能量的系統(tǒng).熱力學(xué)與力學(xué)的區(qū)別熱力學(xué)參量:壓強、體積、溫度等熱力學(xué)的目的:基于熱力學(xué)的基本定律力學(xué)的目的:基于牛頓定律(力學(xué)參量)二平衡態(tài)與非平衡態(tài)
在不受外界影響的條件下,經(jīng)過足夠長時間后系統(tǒng)必將達到一個宏觀上看來不隨時間變化的狀態(tài),這種狀態(tài)稱為平衡態(tài);否則是非平衡態(tài)。真空孤立系統(tǒng)平衡態(tài)的特點:1)單一性(溫度處處相等);2)物態(tài)的穩(wěn)定性——與時間無關(guān);3)自發(fā)過程的終點;4)熱動平衡(有別于力平衡).穩(wěn)恒態(tài):特殊非平衡態(tài)
在有熱流和粒子流的情況下各處的宏觀狀態(tài)均不隨時間變化的狀態(tài)。例如下圖所示的熱傳導(dǎo):0°C100°C穩(wěn)恒態(tài)三熱力學(xué)平衡系統(tǒng)處于平衡態(tài)時應(yīng)不存在熱流與粒子流。熱學(xué)平衡條件力學(xué)平衡條件化學(xué)平衡條件非平衡態(tài):系統(tǒng)中存在有宏觀量的流(熱流、粒子流、動量流)時的狀態(tài)。從非平衡態(tài)到達平衡態(tài)所經(jīng)歷的時間叫馳豫時間。溫度均勻
不考慮重力場時,各處壓強相同組分均勻平衡態(tài)的性質(zhì):
處于平衡態(tài)的系統(tǒng),可用不含時間的宏觀坐標(熱力學(xué)參量)來描述。狀態(tài)參量:描述系統(tǒng)宏觀性質(zhì)的可測量的物理量;狀態(tài)圖:以狀態(tài)參量為坐標軸畫出的圖。
注意:只有處于平衡態(tài)的物理上均勻的系統(tǒng),才可能在狀態(tài)圖(p-V圖、p-T圖)上以一個確定的點表示它的狀態(tài)。
§1.3溫度與溫度計一、溫度中學(xué)給出的定義:溫度是表示物體冷熱程度的物理量。二、熱力學(xué)第零定律▲當兩個物體通過器壁相互接觸時,兩物體的狀態(tài)可以完全獨立地改變,就稱為絕熱壁。非絕熱的器壁稱為透熱壁。P1V1P2V2絕熱壁P1V1P2V2透熱壁在微觀上,溫度是處于熱平衡系統(tǒng)的微觀粒子熱運動強弱程度的度量
物體的狀態(tài)不會發(fā)生任何變化,A與B仍然處于熱平衡(2)互為熱平衡的物體之間必存在一個相同的特征,即它們的溫度是相同的。
第零定律物理意義:(1)指明了比較溫度的方法:用一個標準的物體分別與兩個物體進行熱接觸。作為標準的物體就是溫度計。
熱力學(xué)第零定律:如果兩個物體各自與第三個物體達到熱平衡,它們彼此也必處在熱平衡。A和B同時與C進行熱接觸,經(jīng)過足夠長的時間,A和B將與C達到熱平衡。CABCAB三、溫標
溫標是溫度的數(shù)值表示法,是一套用來標定溫度數(shù)值的規(guī)則.。
經(jīng)驗溫標:以經(jīng)驗上某一物質(zhì)特性隨溫度的變化為依據(jù)建立的溫標,叫做.如攝氏溫標、理想氣體溫標、華氏溫標、蘭氏溫標
熱力學(xué)溫標(絕對溫標):建立一種完全不依賴于測溫物質(zhì)和測溫屬性的非經(jīng)驗溫標.1.經(jīng)驗溫標建立的三個要素:1.經(jīng)驗溫標建立的三個要素:(1)選擇測溫物質(zhì),確定它的測溫屬性;(2)選定固定點:對于水銀溫度計,若選用攝氏溫標(由瑞典天文學(xué)家攝爾修斯于1742年建立),則以冰的正常熔點定為0℃,水的正常沸點定為100℃。(3)進行分度,即對測溫屬性隨溫度的變化關(guān)系作出規(guī)定攝氏溫標將0℃到100℃間等分為100小格,每一小格為1℃。注意:選擇不同測量物質(zhì)或不同測溫屬性所確定的經(jīng)驗溫標并不嚴格一致。(1)、攝氏溫標:攝氏溫標的規(guī)定是:在標準大氣壓(1.01325×105帕)下,冰的熔點(即固液共存的溫度)為0℃,水的沸點為100℃,中間劃分為100等份,每等份為1℃。
1742,瑞典天文學(xué)家安德斯.攝爾休斯(AndersCelsius,1701-1744)提出。2.經(jīng)驗溫標
以氣體為測溫物質(zhì),利用理想氣體狀態(tài)方程中體積(或壓強)不變時壓強(或體積)與溫度成正比關(guān)系所確定的溫標,稱為理想氣體溫標。(2)、理想氣體溫標:
以氣體為測溫物質(zhì),利用理想氣體狀態(tài)方程中體積(或壓強)不變時壓強(或體積)與溫度成正比關(guān)系所確定的溫標,稱為理想氣體溫標,即分為定體及定壓氣體溫度計兩種。(2)、理想氣體溫標:
理想氣體溫標是根據(jù)氣體在極低壓強下所遵從的普遍規(guī)律來確定的,是利用氣體溫度來定標的。
39
Ptr/(133.3224Pa)373.0373.2374.02004006008001000T(p)=373.15KT(p)H2
N2
O2
空氣理想氣體溫標:以水的三相點為定標點,Ttr=273.16K
,tr=0.01oC當測量固定溫度(沸水)時,不同質(zhì)量氣體溫度計的測量值并不相同當溫泡內(nèi)氣體質(zhì)量趨于零時氣體例:定體氣體溫度計a)在氣體的V保持不變時,選氣體的壓強隨溫度的變化來標志溫度。b)
測溫時,移動壓強計右臂M’,使左臂水銀面在不同測量溫度時始終固定在o處,保持氣體體積不變。測溫泡氣體的壓強,由水銀面的高度差h和右臂上的大氣壓求得.c)測溫泡內(nèi)氣體的壓強與溫度成正比(V0不變,定體氣體溫度計)(1)
三相點:使一種物質(zhì)三相(氣,液,固)共存的一個溫度和壓強的數(shù)值。
(2)由(1)(2)相除得水的三相點溫度:Ttr=273.16KPtr:溫度計的氣體在水的三相點的壓強
1714年德國物理學(xué)家華倫海脫(Fahrenhit)建立了華氏溫標,用“tF”表示,這是世界上第一個經(jīng)驗溫標。
與攝氏溫標關(guān)系:人體的正常體溫:370C-98.60F(3)、華氏溫標:
華氏溫標的規(guī)定是:在標準大氣壓下,冰的熔點為32℉,水的沸點為212℉,中間有180等分,每等分為華氏1度?!鴩H上規(guī)定熱力學(xué)溫標為基本溫標;在理想氣體溫標適用的范圍內(nèi),熱力學(xué)溫標就可通過理想氣體溫標來實現(xiàn)。3、熱力學(xué)溫標▲絕對溫標、
開氏溫標:1824年Kelvin發(fā)明,符號是K
通過測熱量來測溫,不依賴任何測溫物質(zhì)和測溫屬性。是由卡諾熱機的效率來定義的(確定溫度比值)(參見§5.2.3)▲只需選定一個溫度參考點:規(guī)定水的三相點0.010C)為273.16K與攝氏溫度換算為:K=℃+273.15
▲攝氏溫度相差10C,熱力學(xué)溫度也相差1K.汽點三相點冰點絕對零度英美等國使用671.67491.69491.670TRR蘭氏溫標英美等國使用212.0032.0232.00-459.67tFF華氏溫標國際通用100.000.010.00-273.15tC攝氏溫標國際通用T=T373.15273.16273.150TK熱力學(xué)溫度通用情況與熱力學(xué)溫度的關(guān)系固定點的溫度值符號單位溫度四種溫度的對照表§1.4物態(tài)方程一、
物態(tài)方程
不管系統(tǒng)狀態(tài)如何改變,給定的系統(tǒng),處于平衡態(tài)的各熱力學(xué)參量之間存在確定的函數(shù)關(guān)系;
描述系統(tǒng)平衡態(tài)的各熱力學(xué)參量之間函數(shù)關(guān)系的方程,稱為物態(tài)方程。(方程中都顯含溫度T
)對于簡單系統(tǒng):對于復(fù)雜系統(tǒng):Pressure-VolumeEquationsofStateGASES
ideal&realgaslawsV~1/P=>PV=nRT(idealgaslaw)finitemolecularvolume=>Veff=V-nb
P(v-b)=RT(ClausiusEOS)attractiveforces=>Peff
=P-a/v2 (P+a/v2)*(v-b)=RT(VdWEOS)二、壓縮系數(shù)、體膨脹系數(shù)、壓強系數(shù)熱膨脹
狀態(tài)方程有3個變量,若某一變量保持不變,其它兩個變量可以建立微商關(guān)系(這就是偏微商),因而可由狀態(tài)方程求得反映系統(tǒng)的重要特性的三個系數(shù):
1、等溫壓縮系數(shù)
表示在溫度不變條件下壓縮系統(tǒng),單位壓強變化所引起的體積的相對變化。
由于物質(zhì)受壓時其體積一般總是要縮小的,而等溫壓縮系數(shù)應(yīng)該大于零,所以有個負號。2、體膨脹系數(shù)
表示在系統(tǒng)壓強不變的條件下,單位溫度變化所引起的體積的相對變化。
由于物體具有3維結(jié)構(gòu),在體積增大的同時必然伴隨有線度的增加,這一性質(zhì)是由線膨脹系數(shù)來表示的
對于各個方向的物理性質(zhì)均相同物質(zhì),在一級近似情況下,體膨脹系數(shù)與線膨脹系數(shù)之間有如上關(guān)系。
p=3
3、相對壓力系數(shù)
表示在系統(tǒng)體積不變的條件下,單位溫度變化所引起的壓強的相對變化。熱膨脹現(xiàn)象
通常氣體、液體和固體的線度及體積均隨溫度升高而增加,這就是熱膨脹現(xiàn)象。a.玻意耳—馬略特定律
m、T一定PV=常數(shù)b.蓋—呂薩克定律
m、P一定體積隨溫度線性變化c.查里定律
m、V一定壓強隨溫度線性變化氣體狀態(tài)改變的實驗定律三理想氣體物態(tài)方程在氣體壓強趨近于零的極限情況下的氣體,稱為理想氣體。通常把嚴格遵守理想氣體物態(tài)方程的氣體稱為理想氣體。理想氣體物態(tài)方程為
pV=
RT
由此可得
p=
RT/V
=(N/Na)RT/V
=(N/V)(R/Na)T
=nkT
1atm=101325Pa阿伏伽德羅常量NA
6.02
1023mol-1
普適氣體常量R
8.31J
mol-1
K-1玻爾茲曼常量k=R/NA
1.38
10-23J
K-1
標準狀態(tài)下理想氣體的摩爾體積
v0=NAk(273.15K)/(101325Pa)
22.4
10-3m3
mol-1混合理想氣體物態(tài)方程P=1RT/V+
2RT/V+···+
nRT/V=P1+P2+···+Pn
變形除V
得:混合理想氣體的壓強等于各組分的分壓強之和。上式叫做道爾頓分壓定律。分體積定律
混合氣體組分i的分體積Vi,是該組分氣體單獨存在并具有與混合氣體相同溫度和壓力時占有的體積.V=1RT/p+
2RT/p+···+
nRT/p=V1+V2+···+Vn
變形除P得:混合氣體體積等于各組分的分體積之和,這一規(guī)律叫做分體積定律。
請注意:p=
pi、V=
Vi、
=
i、N=
Ni、n=
ni、M=
Mi、
=
i,這些等式都成立。
例1.一水銀氣壓計,當水銀柱高度為0.76m時,管頂離水銀柱液面為0.12m。管的截面積為2.0
10-4m2。當有少量氦氣混入水銀管內(nèi)頂部,水銀柱高度下降為0.60m。此時溫度為27℃,試計算有多少質(zhì)量氦氣在管頂?(氦氣的摩爾質(zhì)量為0.004kg/mol,0.76m水銀柱壓強為1.013
105Pa)解:完例2
有一帶有活塞的容器中盛有一定量的氣體,如果壓縮氣體并對它加熱,使它的溫度從27℃升到177℃、體積減少一半,求氣體壓強變化多少?
解:例3.一體積為1.010-3m3容器中,含有4.010-5kg的氦氣和4.010-5kg的氫氣,它們的溫度為30℃,試求容器中的混合氣體的壓強。解:完習(xí)題1.4.8,P.54分析:將活塞打開后,兩容器的氣體達到力學(xué)平衡后壓強相等,但溫度不等。因此A、B中的氣體處于不同的平衡態(tài)體系,應(yīng)分別作為研究對象,不能整體作為一個研究對象。應(yīng)根據(jù)混合前后物質(zhì)的量守恒列方程。解:方法一
設(shè)容器A中有ΔV的氣體進入容器B,容器A中剩余氣體做等溫膨脹到壓強P,有按理想氣體狀態(tài)方程物質(zhì)的量,容器B中氣體物質(zhì)的量變?yōu)榻猓悍椒ǘ鶕?jù)混合前后物質(zhì)的量守恒列方程,有§1.5物質(zhì)的微觀模型一、物質(zhì)由大數(shù)分子組成
物質(zhì)由大數(shù)分子所組成的論點是指宏觀物體是不連續(xù)的,它由大量分子或原子(離子)所組成。
大家知道,1mol物質(zhì)中的分子數(shù),即阿伏伽德羅常量
NA=6.02×1023/mol
利用掃描隧道顯微鏡技術(shù)把一個個原子排列成IBM字母的照片.二、分子熱運動的例證分子(或原子)處于永不停息的熱運動中。(1)擴散
擴散現(xiàn)象是人們熟知的一種現(xiàn)象,氣體和液體中的擴散現(xiàn)象是分子熱運動所致。
固體中的擴散現(xiàn)象通常不大顯著,只有高溫下才有明顯效果。(2)布朗運動
英國植物學(xué)家布朗(Brown)于1827年在顯微鏡下觀察到的懸浮在液體中的花粉微粒在做的不規(guī)則的雜亂運動。
溫度越高,布朗運動越劇烈;微粒越小,布朗運動越明顯。
布朗運動并非分子的運動,但它能間接反映出液體(或氣體)內(nèi)分子運動的無規(guī)則性。粒子數(shù)越少漲落越顯著
可以證明:在粒子可以自由出入的某空間范圍內(nèi)的粒子數(shù)的相對漲落反比于系統(tǒng)中的分子數(shù)N的平方根
若任一隨機變量M
的平均值為 ,則M
在附近的偏差 ,顯然=0,但方均偏差不等于零其相對方均根偏差稱為漲落漲落現(xiàn)象:
偏離統(tǒng)計平均值的現(xiàn)象65
三、分子間的吸引力與排斥力
rfo力分子斥力
引力
1、吸引力和排斥力在r=r0
時分子力為零,相當于兩分子剛好“接觸”,
r0的大小約等于分子小球的直徑大小。66
rfo力分子斥力
引力
1)分子間的力是近距離力▲只有當分子質(zhì)心相互接近到某一距離內(nèi),分子間相互吸引力才較顯著,把這一距離稱為分子吸引力作用半徑?!芏辔镔|(zhì)的分子引力作用半徑約為分子直徑的兩倍左右(r引=2r0),超過這一距離,分子間相互作用力已很小,可予忽略。
2)分子力是電磁力,而非萬有引力;
3)分子力是保守力,具有勢能,稱分子作用力勢能。▲排斥力作用半徑就是兩分子剛好接觸時兩質(zhì)心間的距離,它約等于分子的直徑(r斥=r0
)。隨分子質(zhì)心間距離減小而急劇增大。2.分子力和分子熱運動(形成一對矛盾)
分子間的相互吸引力、排斥力有使分子聚在一起并在空間形成某種有序排列的趨向,但分子熱運動卻力圖破壞這種趨向,使分子盡量相互散開。
這一對矛盾的兩個方面互相制約和變化,決定了物質(zhì)不同的性質(zhì)?!?.6理想氣體微觀描述的初級理論一、理想氣體微觀模型理想氣體分子間距洛施密特常數(shù):
(Loschmidt
)標準狀態(tài)下氣體分子間平均距離:分子的直徑、分子的大小對于液體、固體可假設(shè)分子間距等于分子的直徑。氮分子直徑液氮密度ρ=800kg/m3(1)分子可視為質(zhì)點;線度間距,;
(2)除碰撞瞬間,
分子間無相互作用力;理想氣體的微觀模型
(4)分子的運動遵從經(jīng)典力學(xué)的規(guī)律.
(3)彈性質(zhì)點(碰撞均為完全彈性碰撞);
(2)除碰撞瞬間,分子間無相互作用力;分子在兩次碰撞之間作自由的勻速直線運動;理想氣體的微觀模型
(4)分子的運動遵從經(jīng)典力學(xué)的規(guī)律.
(3)處于平衡態(tài)的理想氣體,分子之間及分子與器壁間的碰撞是完全彈性碰撞;(碰撞中動量、動能守恒)
;(1)理想氣體分子本身線度比起分子間距小得多而可忽略不計,分子可視為質(zhì)點;處于平衡態(tài)的理想氣體的微觀性質(zhì)i.在沒有外力場時,處于平衡態(tài)的容器內(nèi)的分子氣體空間分布是處處均勻的。ii.在平衡態(tài)下任何系統(tǒng)的任何分子向各個方向運動的機會是均等的(分子混沌性假設(shè))iii.除了相互碰撞外,分子間的速度和位置都相互獨立。附注:在常溫下,壓強在數(shù)個大氣壓以下的氣體,一般都能很好地滿足理想氣體方程。二、單位時間碰在單位面積器壁上平均分子數(shù)
我們把處于平衡態(tài)下的理想氣體在單位時間內(nèi)碰撞在單位面積上的平均分子數(shù)稱為氣體分子碰撞頻率或氣體分子碰壁數(shù),以
表示。1.若分子數(shù)密度為n,則單位體積中垂直向方容器任一器壁運動的平均分子數(shù)為n/6。兩條假設(shè):顯然,在氣體狀態(tài)一定時,其
應(yīng)恒定不變。2.每一分子都以平均速率v
運動?!鱰時間內(nèi),所有向-x方向運動的分子均移動了距離△t時間內(nèi)碰撞在△A面積器壁上的平均分子數(shù)△N等于柱體內(nèi)的分子數(shù)單位時間內(nèi)碰在單位面積器壁上的平均分子數(shù)為:
雖然上面推導(dǎo)中,假設(shè)容器的形狀是長方體,實際上可適于任何形狀的容器,只要其中理想氣體處于平衡態(tài)。
[例1.2]設(shè)某氣體在標準狀況下的平均速率為500m/s,試分別計算1s內(nèi)碰在1cm2面積及10-19m2面積器壁上的平均分子數(shù)。
[解]
標準狀況下氣體分子的數(shù)密度
n0=2.7
1025/m3故三、理想氣體壓強公式壓強的單位換算
早在1738年,伯努利就設(shè)想氣體壓強來自粒子碰撞器壁所產(chǎn)生的沖量,在歷史上首次建立了分子理論的基本概念。
我們知道,器壁所受到的氣體壓強是單位時間內(nèi)大數(shù)分子頻繁碰撞器壁所給予單位面積器壁的平均總沖量。
壓強是大量分子對容器壁發(fā)生碰撞,從而對容器壁產(chǎn)生沖力的宏觀效果。附:氣體壓強的微觀機制理想氣體壓強公式推導(dǎo)假設(shè):立方體的單位體積內(nèi)均有n/6各分子以平均速率向±x、±y、±z
六個方向運動。1.dt
時間內(nèi)垂直碰撞在xy
平面dA面積器壁上的分子數(shù)為nvdAdt/6,若每個分子與器壁碰撞是完全彈性的,每次碰撞產(chǎn)生的動量改變?yōu)?mv2.
在dt
時間內(nèi)dA面積器壁所受到的平均總沖量:3.
理想氣體壓強公式:若設(shè)每個分子的平均平動能為:則注:推導(dǎo)中利用了平均速率近似等于均方根速率的條件:(詳見§2.3)81
壓強的物理意義
統(tǒng)計關(guān)系式宏觀可測量量微觀量的統(tǒng)計平均值分子平均平動動能
壓強是大量分子對時間、對面積的統(tǒng)計平均結(jié)果.
4.理想氣體壓強公式的另一形式:R是描述1mol氣體行為的普適常量;
而k是描述一個分子或一個粒子行為的普適恒量,這是奧地利物理學(xué)家玻爾茲曼于1872年引入的,故稱為玻爾茲曼常量。四、溫度的微觀意義
從微觀上理解,溫度是平衡態(tài)系統(tǒng)的微觀粒子熱運動程度強弱的量度。
它表明分子熱運動平均平動動能與絕對溫度成正比。絕對溫度越高,分子熱運動越劇烈。絕對溫度是分子熱運動劇烈程度的量度,這是溫度的微觀意義所在。將p=nkT
與比較可得分子熱運動平均平動動能1、從微觀闡述了溫度的實質(zhì)2、揭示了宏觀量T和微觀量平均值之間的關(guān)系。絕對溫度是分子熱運動劇烈程度的度量①是分子雜亂無章熱運動的平均平動動能,它不包括整體定向運動動能。②理想氣體分子平均平動動能僅與溫度有關(guān),與分子質(zhì)量無關(guān)。氣體分子的方均根速率由可得:[例1.3]試求T=273K時氫分子的方均根速率Vrms及空氣分子的方均根速率Vrms
[解]例題、兩瓶不同種類的氣體,其分子平均動能相等,但分子數(shù)密度數(shù)不同。問:它們的溫度是否相同?壓強是否相同?解:例
多高溫度下,氣體分子平均平動能等于一個電子伏特?例一容器內(nèi)有氧氣,其壓強P=1.0atm,溫度為t=27℃,求(1)單位體積內(nèi)的分子數(shù): (2)氧分子的質(zhì)量;(3)氧氣的密度;(4)分子的平均平動能。(1)單位體積內(nèi)的分子數(shù):(2)氧分子的質(zhì)量
(3)氧氣的密度(4)分子的平均平動能。質(zhì)量為50.0g,溫度為18.0℃的氦氣裝在容積為10.0L的封閉容器內(nèi),容器以v=200m/s的速率作勻速直線運動。若容器突然靜止,定向運動的動能全部轉(zhuǎn)化為分子熱運動的動能,則平衡后氦氣的溫度和壓強將各增大多少?由于容器以速率v作定向運動時,每一個分子都具有定向運動,其動能等于,當容器停止運動時,分子定向運動的動能將轉(zhuǎn)化為分子熱運動的能量,每個分子的平均熱運動能量則為
由于容器以速率v作定向運動時,每一個分子都具有定向運動,其動能等于,當容器停止運動時,分子定向運動的動能將轉(zhuǎn)化為分子熱運動的能量,每個分子的平均熱運動能量則為一、分子間互作用勢能曲線1、分子作用力曲線
為便于分析,常設(shè)分子是球形的,分子間的互作用是對稱的中心力場。?在r=r0
時分子力為零,相當于兩分子剛好“接觸”。?當r<r0時,兩分子在受到“擠壓”過程中產(chǎn)生強斥力,?這時分子間力F(r)>0且隨r0減少而劇烈增大。當r超過某一值(吸引力作用半徑)時,F(r)即接近于零。§1.7分子間作用力勢能與真實氣體物態(tài)方程2.分子相互作用勢能曲線
分子力是一種保守力,而保守力所作負功等于勢能Ep的增量,故分子作用力勢能的微小增量為:若令分子間距離為r趨向無窮遠時的勢能為零,則:
在平衡位置r=r0處,分子力F(r)=0,勢能有極小值,它是負的.
在r>r0處,F(xiàn)(r)<0,勢能曲線斜率是正的,這時是吸引力.液體和固體中分子的振動就是利用分子力這一特性來解釋作出與分子作用力曲線所對應(yīng)的互作用勢能曲線:
設(shè)一分子質(zhì)心a1靜止不動,另一分子質(zhì)心a2從極遠處(這時勢能為零)以相對運動動能EK0向a1運動。圖中的橫坐標表示兩分子質(zhì)心間距離r。
用分子勢能曲線解釋分子間對心碰撞
d與氣體溫度有關(guān)溫度越高,d越小。
d是兩分子對心碰撞時相互接近最短質(zhì)心間距離,故稱d為分子碰撞有效直徑;二、分子碰撞有效直徑、熱振動、熱膨脹98
在兩分子之間的彈性碰撞過程中,兩個分子中心之間的距離r所達到的最小值d,可以視為分子碰撞有效直徑;此時
Ep=Ek0。分子(碰撞)有效直徑分子力分子相互作用勢能曲線附:關(guān)于分子的直徑通常提到的分子直徑有兩種理解:(1)一種指分子的大小.這主要是指由它們組成固體時,最鄰近分子間的平均距離,通常把平衡位置時兩分子質(zhì)心間平均距離r0視作分子直徑。(2)另一種理解的分子直徑是指兩分子相互對心碰撞時,兩分子質(zhì)心間最短距離,這就是分子碰撞有效直徑d。
顯然r0
與d是不同的,分子有效直徑d隨著熱力學(xué)溫度T
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 空地養(yǎng)殖合同范例
- 企業(yè)門衛(wèi)聘用合同范例
- 電梯售后合同范例
- 個體雇工合同范例
- 賣油漆合同范例
- 沒有房產(chǎn)證轉(zhuǎn)賣合同范例
- 汽車維修用工合同范例
- 書店店面轉(zhuǎn)租合同范例
- 律師擬定欠款合同范例
- 真石漆分別合同范例
- 2021離婚協(xié)議書電子版免費
- 《班主任工作常規(guī)》課件
- 初中英語期末考試方法與技巧課件
- 四年級上冊綜合實踐試題-第一學(xué)期實踐考查卷 粵教版 含答案
- 油煙管道清洗服務(wù)承諾書
- 卷積神經(jīng)網(wǎng)絡(luò)講義課件
- 山東師范大學(xué)《英語語言學(xué)》期末復(fù)習(xí)題
- 考研快題系列一(城市濱水廣場綠地設(shè)計)
- HTML5CSS3 教案及教學(xué)設(shè)計合并
- 青島版六三二年級上冊數(shù)學(xué)乘加乘減解決問題1課件
- 汽車機械基礎(chǔ)課件第五單元機械傳動任務(wù)二 鏈傳動
評論
0/150
提交評論