四川信息職業(yè)技術(shù)學(xué)院《預(yù)測方法和技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
四川信息職業(yè)技術(shù)學(xué)院《預(yù)測方法和技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
四川信息職業(yè)技術(shù)學(xué)院《預(yù)測方法和技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
四川信息職業(yè)技術(shù)學(xué)院《預(yù)測方法和技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
四川信息職業(yè)技術(shù)學(xué)院《預(yù)測方法和技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁四川信息職業(yè)技術(shù)學(xué)院《預(yù)測方法和技術(shù)》

2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、對于一個(gè)包含時(shí)間戳的數(shù)據(jù),若要按照時(shí)間順序進(jìn)行分組并計(jì)算每組的統(tǒng)計(jì)量,以下哪種方法在Python中較為便捷?()A.使用pd.Grouper函數(shù)B.自定義函數(shù)進(jìn)行分組C.先對時(shí)間戳進(jìn)行排序,再進(jìn)行分組D.以上方法都可行2、在建立分類模型時(shí),如果數(shù)據(jù)存在類別不平衡問題,以下哪種技術(shù)可以用于數(shù)據(jù)增強(qiáng)?()A.生成對抗網(wǎng)絡(luò)B.自編碼器C.變分自編碼器D.以上都不是3、對于一個(gè)高維度的數(shù)據(jù)集,若要快速找到與給定數(shù)據(jù)點(diǎn)最相似的k個(gè)數(shù)據(jù)點(diǎn),以下哪種算法效率較高?()A.K-Means算法B.KNN算法C.DBSCAN算法D.層次聚類算法4、在進(jìn)行數(shù)據(jù)分析項(xiàng)目時(shí),需要對數(shù)據(jù)進(jìn)行探索性分析。以下哪個(gè)工具常用于探索性數(shù)據(jù)分析?()A.ExcelB.SPSSC.PythonD.R5、數(shù)據(jù)挖掘在發(fā)現(xiàn)隱藏在數(shù)據(jù)中的模式和知識方面發(fā)揮著重要作用。假設(shè)要從一個(gè)電商網(wǎng)站的用戶購買記錄中挖掘潛在的消費(fèi)模式,以下關(guān)于數(shù)據(jù)挖掘的描述,哪一項(xiàng)是不正確的?()A.關(guān)聯(lián)規(guī)則挖掘可以發(fā)現(xiàn)經(jīng)常一起購買的商品組合B.分類算法可以預(yù)測新用戶可能感興趣的商品類別C.數(shù)據(jù)挖掘的結(jié)果總是準(zhǔn)確無誤的,可以直接用于決策,無需進(jìn)一步驗(yàn)證D.聚類分析可以將用戶分為具有相似購買行為的不同群體6、在進(jìn)行數(shù)據(jù)分析時(shí),如果需要對數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理以消除量綱的影響,以下哪種方法在Python中常用?()A.StandardScaler類B.MinMaxScaler類C.Normalizer類D.以上都是7、數(shù)據(jù)分析在金融領(lǐng)域的應(yīng)用越來越廣泛。以下關(guān)于數(shù)據(jù)分析在金融風(fēng)險(xiǎn)管理中的作用,不準(zhǔn)確的是()A.可以通過分析歷史數(shù)據(jù)來評估信用風(fēng)險(xiǎn),預(yù)測違約概率B.利用市場數(shù)據(jù)進(jìn)行風(fēng)險(xiǎn)模型的構(gòu)建和壓力測試,防范系統(tǒng)性風(fēng)險(xiǎn)C.數(shù)據(jù)分析能夠?qū)崟r(shí)監(jiān)測交易活動,發(fā)現(xiàn)異常和欺詐行為D.數(shù)據(jù)分析在金融風(fēng)險(xiǎn)管理中雖然有一定作用,但傳統(tǒng)的風(fēng)險(xiǎn)管理方法仍然是主要的手段,數(shù)據(jù)分析可以忽略8、在數(shù)據(jù)分析中,模型的可解釋性對于理解模型的決策過程和結(jié)果非常重要。假設(shè)建立了一個(gè)用于信用評估的模型,需要向決策者解釋模型是如何做出信用評分的。以下哪種模型在提供可解釋性方面更具優(yōu)勢?()A.決策樹模型B.神經(jīng)網(wǎng)絡(luò)模型C.隨機(jī)森林模型D.以上模型可解釋性相同9、在數(shù)據(jù)分析中,異常值檢測對于發(fā)現(xiàn)數(shù)據(jù)中的異常情況非常重要。假設(shè)要檢測一個(gè)生產(chǎn)線上產(chǎn)品質(zhì)量數(shù)據(jù)中的異常值,這些數(shù)據(jù)受到多種因素的影響。以下哪種異常值檢測方法在這種工業(yè)生產(chǎn)數(shù)據(jù)中更能準(zhǔn)確地發(fā)現(xiàn)異常?()A.基于統(tǒng)計(jì)的方法B.基于距離的方法C.基于密度的方法D.基于聚類的方法10、數(shù)據(jù)分析中的推薦系統(tǒng)廣泛應(yīng)用于電商、娛樂等領(lǐng)域。假設(shè)要為一個(gè)在線音樂平臺構(gòu)建推薦系統(tǒng),根據(jù)用戶的歷史播放記錄和偏好為其推薦歌曲。以下哪種推薦算法在處理這種音樂推薦場景時(shí)更能滿足用戶的個(gè)性化需求?()A.基于內(nèi)容的推薦B.協(xié)同過濾推薦C.基于知識的推薦D.混合推薦11、數(shù)據(jù)可視化是數(shù)據(jù)分析的重要手段之一。以下關(guān)于數(shù)據(jù)可視化的作用,不準(zhǔn)確的是()A.數(shù)據(jù)可視化能夠?qū)?fù)雜的數(shù)據(jù)以直觀、易懂的圖形和圖表形式呈現(xiàn),幫助人們快速理解數(shù)據(jù)的含義和趨勢B.通過數(shù)據(jù)可視化,可以發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式、異常值和關(guān)系,為進(jìn)一步的分析提供線索C.數(shù)據(jù)可視化只是為了讓數(shù)據(jù)看起來更美觀,對于數(shù)據(jù)分析的實(shí)質(zhì)內(nèi)容沒有太大幫助D.好的數(shù)據(jù)可視化能夠有效地傳達(dá)信息,支持決策制定,并與他人分享分析結(jié)果12、在數(shù)據(jù)分析的社交網(wǎng)絡(luò)分析中,假設(shè)要研究一個(gè)社交平臺上用戶之間的關(guān)系和信息傳播。以下哪個(gè)指標(biāo)或概念對于理解網(wǎng)絡(luò)結(jié)構(gòu)和影響力可能是重要的?()A.度中心性,衡量節(jié)點(diǎn)的連接數(shù)量B.介數(shù)中心性,反映節(jié)點(diǎn)在路徑中的重要性C.接近中心性,體現(xiàn)節(jié)點(diǎn)與其他節(jié)點(diǎn)的接近程度D.不考慮網(wǎng)絡(luò)結(jié)構(gòu),只關(guān)注用戶發(fā)布的內(nèi)容13、在進(jìn)行數(shù)據(jù)探索性分析時(shí),以下關(guān)于發(fā)現(xiàn)數(shù)據(jù)中的異常值的方法,哪一項(xiàng)是最常用的?()A.計(jì)算數(shù)據(jù)的均值和標(biāo)準(zhǔn)差,超出一定范圍的值視為異常值B.繪制箱線圖,觀察超出箱體范圍的值C.對數(shù)據(jù)進(jìn)行排序,查看兩端的值D.隨機(jī)抽取部分?jǐn)?shù)據(jù)進(jìn)行檢查14、在數(shù)據(jù)分析中的數(shù)據(jù)預(yù)處理階段,以下關(guān)于數(shù)據(jù)標(biāo)準(zhǔn)化和歸一化的敘述,不準(zhǔn)確的是()A.數(shù)據(jù)標(biāo)準(zhǔn)化是將數(shù)據(jù)轉(zhuǎn)換為具有零均值和單位方差的分布,使不同特征在數(shù)值上具有可比性B.數(shù)據(jù)歸一化是將數(shù)據(jù)映射到特定的區(qū)間,如[0,1]或[-1,1],以消除量綱的影響C.標(biāo)準(zhǔn)化和歸一化對于某些算法(如基于距離的算法)的性能提升有幫助,但不是必需的步驟D.無論數(shù)據(jù)的分布和特征如何,都應(yīng)該進(jìn)行標(biāo)準(zhǔn)化或歸一化處理,以確保分析結(jié)果的準(zhǔn)確性15、數(shù)據(jù)分析中的模型評估不僅包括在訓(xùn)練集上的表現(xiàn),還需要在測試集上進(jìn)行驗(yàn)證。假設(shè)我們在訓(xùn)練一個(gè)模型時(shí),發(fā)現(xiàn)訓(xùn)練集上的準(zhǔn)確率很高,但測試集上的準(zhǔn)確率很低,以下哪種情況可能導(dǎo)致了這種過擬合現(xiàn)象?()A.模型過于復(fù)雜B.訓(xùn)練數(shù)據(jù)量不足C.特征選擇不當(dāng)D.以上都是16、主成分分析(PCA)是一種數(shù)據(jù)降維技術(shù)。假設(shè)要對高維數(shù)據(jù)進(jìn)行降維以便于分析和可視化,以下關(guān)于主成分分析的描述,正確的是:()A.不考慮數(shù)據(jù)的方差和相關(guān)性,直接進(jìn)行主成分提取B.提取過多的主成分,導(dǎo)致信息冗余,增加分析的復(fù)雜性C.合理確定保留的主成分?jǐn)?shù)量,使其能夠在最大程度保留原始數(shù)據(jù)信息的同時(shí)降低維度,并解釋主成分的含義D.認(rèn)為主成分分析可以適用于所有類型的數(shù)據(jù),不進(jìn)行數(shù)據(jù)的預(yù)處理和適用性評估17、在數(shù)據(jù)分析過程中,數(shù)據(jù)清洗是一個(gè)關(guān)鍵步驟。以下關(guān)于數(shù)據(jù)清洗的目的,錯(cuò)誤的是?()A.去除數(shù)據(jù)中的噪聲和異常值,提高數(shù)據(jù)的質(zhì)量B.統(tǒng)一數(shù)據(jù)的格式和單位,便于后續(xù)的分析和處理C.增加數(shù)據(jù)的數(shù)量,提高數(shù)據(jù)分析的結(jié)果的可靠性D.修復(fù)數(shù)據(jù)中的缺失值,確保數(shù)據(jù)的完整性18、關(guān)于數(shù)據(jù)分析中的客戶細(xì)分,假設(shè)要根據(jù)客戶的購買行為、人口統(tǒng)計(jì)信息和在線活動將客戶分為不同的細(xì)分群體。以下哪種細(xì)分方法可能更能揭示客戶的潛在需求和行為模式?()A.RFM模型,基于消費(fèi)頻率、金額和最近消費(fèi)時(shí)間B.基于聚類的細(xì)分,自動發(fā)現(xiàn)相似群體C.基于決策樹的細(xì)分,根據(jù)規(guī)則劃分D.不進(jìn)行客戶細(xì)分,對所有客戶采用相同的策略19、在進(jìn)行數(shù)據(jù)預(yù)處理時(shí),特征工程是重要的環(huán)節(jié)。假設(shè)我們有一個(gè)包含房屋屬性(面積、房間數(shù)量、地理位置等)和價(jià)格的數(shù)據(jù)集,以下關(guān)于特征工程的描述,正確的是:()A.直接使用原始特征進(jìn)行建模,無需進(jìn)行任何特征轉(zhuǎn)換和構(gòu)建B.對地理位置進(jìn)行獨(dú)熱編碼可以有效地將其納入模型C.特征縮放對模型的性能沒有影響,可忽略D.增加一些與房屋價(jià)格無關(guān)的特征,能夠提高模型的準(zhǔn)確性20、數(shù)據(jù)分析中的數(shù)據(jù)集成涉及將多個(gè)數(shù)據(jù)源的數(shù)據(jù)合并在一起。假設(shè)要將來自不同數(shù)據(jù)庫的客戶信息和交易數(shù)據(jù)集成,以下哪個(gè)問題可能是最具挑戰(zhàn)性的?()A.數(shù)據(jù)格式不一致B.數(shù)據(jù)字段的命名差異C.數(shù)據(jù)的重復(fù)和沖突D.以上問題都很具有挑戰(zhàn)性21、數(shù)據(jù)分析中的聚類分析用于將數(shù)據(jù)分為不同的組或簇。假設(shè)要對一組學(xué)生的學(xué)習(xí)成績數(shù)據(jù)進(jìn)行聚類,以發(fā)現(xiàn)不同學(xué)習(xí)水平的群體。如果聚類結(jié)果中存在一個(gè)簇的規(guī)模遠(yuǎn)大于其他簇,可能意味著什么?()A.數(shù)據(jù)分布不均衡,需要重新聚類B.大部分學(xué)生的學(xué)習(xí)水平相似C.聚類算法選擇不當(dāng)D.這種情況是正常的,無需進(jìn)一步處理22、在數(shù)據(jù)分析中,決策樹是一種常用的分類算法。假設(shè)要根據(jù)客戶的特征預(yù)測他們是否會購買某種產(chǎn)品,以下關(guān)于決策樹的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.決策樹通過對數(shù)據(jù)進(jìn)行逐步分裂,構(gòu)建樹狀結(jié)構(gòu)來進(jìn)行分類預(yù)測B.可以通過剪枝技術(shù)來防止決策樹過擬合,提高模型的泛化能力C.決策樹的生成過程完全是自動的,不需要人工干預(yù)和調(diào)整D.隨機(jī)森林是基于決策樹的集成學(xué)習(xí)算法,能夠提高預(yù)測的準(zhǔn)確性和穩(wěn)定性23、在進(jìn)行數(shù)據(jù)分析時(shí),若要檢驗(yàn)兩個(gè)總體的方差是否相等,應(yīng)使用哪種檢驗(yàn)方法?()A.F檢驗(yàn)B.t檢驗(yàn)C.卡方檢驗(yàn)D.秩和檢驗(yàn)24、在數(shù)據(jù)分析中,數(shù)據(jù)可視化常常用于呈現(xiàn)復(fù)雜的數(shù)據(jù)關(guān)系。以下關(guān)于數(shù)據(jù)可視化工具的說法中,錯(cuò)誤的是?()A.Tableau是一款功能強(qiáng)大的數(shù)據(jù)可視化軟件,可連接多種數(shù)據(jù)源進(jìn)行分析和展示B.PowerBI具有直觀的界面和豐富的可視化圖表類型,適合企業(yè)級數(shù)據(jù)分析C.Excel只能進(jìn)行簡單的數(shù)據(jù)可視化,對于大規(guī)模數(shù)據(jù)分析不夠?qū)嵱肈.數(shù)據(jù)可視化工具的選擇只取決于個(gè)人喜好,與數(shù)據(jù)類型和分析需求無關(guān)25、在數(shù)據(jù)挖掘中,若要發(fā)現(xiàn)數(shù)據(jù)中隱藏的模式和關(guān)聯(lián)規(guī)則,以下哪種算法是常用的?()A.Apriori算法B.KNN算法C.SVM算法D.隨機(jī)森林算法26、數(shù)據(jù)分析中的主成分分析(PCA)常用于數(shù)據(jù)降維。假設(shè)我們有一個(gè)高維的數(shù)據(jù)集,其中包含大量相關(guān)的特征,通過PCA進(jìn)行降維時(shí),以下哪個(gè)說法是正確的?()A.降維后的主成分?jǐn)?shù)量一定少于原始特征數(shù)量B.主成分是原始特征的線性組合C.降維過程會丟失部分?jǐn)?shù)據(jù)信息D.以上都是27、假設(shè)我們正在分析一家公司的銷售數(shù)據(jù),以制定營銷策略。以下關(guān)于數(shù)據(jù)分析目的和方法的描述,正確的是:()A.主要目的是找出銷售額最高的產(chǎn)品,通過簡單排序就能實(shí)現(xiàn)B.為了預(yù)測未來銷售趨勢,應(yīng)該使用時(shí)間序列分析方法C.分析客戶地域分布對銷售的影響時(shí),無需考慮其他因素D.要評估不同營銷渠道的效果,只需比較銷售額的大小28、在數(shù)據(jù)分析中,數(shù)據(jù)分析的流程包括多個(gè)步驟,其中問題定義是第一個(gè)步驟。以下關(guān)于問題定義的描述中,錯(cuò)誤的是?()A.問題定義應(yīng)該明確數(shù)據(jù)分析的目的和需求B.問題定義應(yīng)該考慮數(shù)據(jù)的可用性和可獲取性C.問題定義應(yīng)該確定數(shù)據(jù)分析的方法和工具D.問題定義可以根據(jù)需要進(jìn)行調(diào)整和修改,以適應(yīng)不同的情況29、在數(shù)據(jù)分析中的分類算法評估指標(biāo)中,以下關(guān)于準(zhǔn)確率和召回率的說法,不正確的是()A.準(zhǔn)確率是指分類正確的樣本數(shù)占總樣本數(shù)的比例B.召回率是指被正確分類的正例樣本數(shù)占實(shí)際正例樣本數(shù)的比例C.在某些情況下,準(zhǔn)確率和召回率可能存在矛盾,需要根據(jù)具體問題權(quán)衡二者的重要性D.為了綜合評估分類算法的性能,只需要關(guān)注準(zhǔn)確率和召回率其中一個(gè)指標(biāo)即可,另一個(gè)可以忽略30、數(shù)據(jù)可視化在數(shù)據(jù)分析中有助于直觀地理解數(shù)據(jù)。假設(shè)要展示不同地區(qū)的銷售額分布情況,以下關(guān)于數(shù)據(jù)可視化選擇的描述,正確的是:()A.使用折線圖,因?yàn)樗軌蚯逦仫@示銷售額隨時(shí)間的變化趨勢B.采用柱狀圖,能直觀對比不同地區(qū)銷售額的差異C.選擇餅圖,以便準(zhǔn)確呈現(xiàn)各地區(qū)銷售額占總銷售額的比例D.運(yùn)用散點(diǎn)圖,可分析銷售額與其他相關(guān)因素的關(guān)系二、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)在農(nóng)業(yè)保險(xiǎn)領(lǐng)域,數(shù)據(jù)分析可以幫助合理定價(jià)和防范欺詐。以某農(nóng)業(yè)保險(xiǎn)公司為例,討論如何運(yùn)用數(shù)據(jù)分析來評估農(nóng)作物風(fēng)險(xiǎn)、確定保險(xiǎn)費(fèi)率、識別欺詐行為,以及如何與農(nóng)業(yè)部門和氣象數(shù)據(jù)合作提高風(fēng)險(xiǎn)評估的準(zhǔn)確性。2、(本題5分)在醫(yī)療健康管理中,如何利用可穿戴設(shè)備收集的數(shù)據(jù)進(jìn)行健康監(jiān)測和疾病預(yù)警,提供個(gè)性化的健康管理方案。3、(本題5分)對于企業(yè)的供應(yīng)鏈風(fēng)險(xiǎn)管理,論述如何運(yùn)用數(shù)據(jù)分析識別潛在的風(fēng)險(xiǎn)因素,制定風(fēng)險(xiǎn)應(yīng)對策略,保障供應(yīng)鏈的穩(wěn)定性。4、(本題5分)在線教育的教師評價(jià)體系可以基于教學(xué)數(shù)據(jù)進(jìn)行構(gòu)建。請?jiān)敿?xì)闡述如何通過學(xué)生反饋、教學(xué)過程數(shù)據(jù)和教學(xué)成果來評估教師的教學(xué)質(zhì)量,為教師發(fā)展提供支持和改進(jìn)方向。5、(本題5分)在金融科技的創(chuàng)新應(yīng)用中,如何利用數(shù)據(jù)分析來評估新產(chǎn)品的市場潛力、用戶接受度和風(fēng)險(xiǎn)特征,例如數(shù)字支付、區(qū)塊鏈金融等領(lǐng)域,同時(shí)應(yīng)對新興技術(shù)帶來的數(shù)據(jù)分析挑戰(zhàn)。三、簡答題(本大題共5個(gè)小題,共25分)1、(本題5分)在數(shù)據(jù)分析中,如何進(jìn)行數(shù)據(jù)的探索性分析(EDA)?請說明EDA的主要步驟和方法,以及它對后續(xù)分析的作用。2、(本題5分)在數(shù)據(jù)分析中,如何評估數(shù)據(jù)的分布特征?請介紹描述數(shù)據(jù)分布的統(tǒng)計(jì)量和圖表,如直方圖、箱線圖等,并舉例說明。3、(本題5分)解釋什么是生成對抗模仿學(xué)習(xí),說明其在模仿學(xué)習(xí)和數(shù)據(jù)生成中的應(yīng)用和優(yōu)勢,并舉例分

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論