版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆吉林省長(zhǎng)春市九臺(tái)區(qū)四中高三下學(xué)期聯(lián)考數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)全集,集合,則=()A. B. C. D.2.蒙特卡洛算法是以概率和統(tǒng)計(jì)的理論、方法為基礎(chǔ)的一種計(jì)算方法,將所求解的問(wèn)題同一定的概率模型相聯(lián)系;用均勻投點(diǎn)實(shí)現(xiàn)統(tǒng)計(jì)模擬和抽樣,以獲得問(wèn)題的近似解,故又稱統(tǒng)計(jì)模擬法或統(tǒng)計(jì)實(shí)驗(yàn)法.現(xiàn)向一邊長(zhǎng)為的正方形模型內(nèi)均勻投點(diǎn),落入陰影部分的概率為,則圓周率()A. B.C. D.3.已知函數(shù)若關(guān)于的方程有六個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為()A. B. C. D.4.集合的子集的個(gè)數(shù)是()A.2 B.3 C.4 D.85.已知函數(shù),,,,則,,的大小關(guān)系為()A. B. C. D.6.若實(shí)數(shù)滿足的約束條件,則的取值范圍是()A. B. C. D.7.△ABC中,AB=3,,AC=4,則△ABC的面積是()A. B. C.3 D.8.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某幾何體的三視圖,則該幾何體的表面積()A. B. C. D.9.設(shè),則““是“”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必條件10.已知雙曲線C:1(a>0,b>0)的焦距為8,一條漸近線方程為,則C為()A. B.C. D.11.一個(gè)算法的程序框圖如圖所示,若該程序輸出的結(jié)果是,則判斷框中應(yīng)填入的條件是()A. B. C. D.12.已知雙曲線的右焦點(diǎn)為,過(guò)的直線交雙曲線的漸近線于兩點(diǎn),且直線的傾斜角是漸近線傾斜角的2倍,若,則該雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.袋中有形狀、大小都相同的4只球,其中1只白球,1只紅球,2只黃球,從中一次隨機(jī)摸出2只球,則這2只球顏色不同的概率為_(kāi)_________.14.命題“”的否定是______.15.若正三棱柱的所有棱長(zhǎng)均為2,點(diǎn)為側(cè)棱上任意一點(diǎn),則四棱錐的體積為_(kāi)_________.16.在某批次的某種燈泡中,隨機(jī)抽取200個(gè)樣品.并對(duì)其壽命進(jìn)行追蹤調(diào)查,將結(jié)果列成頻率分布表如下:壽命(天)頻數(shù)頻率40600.30.4200.1合計(jì)2001某人從燈泡樣品中隨機(jī)地購(gòu)買了個(gè),如果這個(gè)燈泡的壽命情況恰好與按四個(gè)組分層抽樣所得的結(jié)果相同,則的最小值為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知集合,,,將的所有子集任意排列,得到一個(gè)有序集合組,其中.記集合中元素的個(gè)數(shù)為,,,規(guī)定空集中元素的個(gè)數(shù)為.當(dāng)時(shí),求的值;利用數(shù)學(xué)歸納法證明:不論為何值,總存在有序集合組,滿足任意,,都有.18.(12分)已知函數(shù),(1)求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時(shí),判斷函數(shù),()有幾個(gè)零點(diǎn),并證明你的結(jié)論;(3)設(shè)函數(shù),若函數(shù)在為增函數(shù),求實(shí)數(shù)的取值范圍.19.(12分)中的內(nèi)角,,的對(duì)邊分別是,,,若,.(1)求;(2)若,點(diǎn)為邊上一點(diǎn),且,求的面積.20.(12分)某市調(diào)硏機(jī)構(gòu)對(duì)該市工薪階層對(duì)“樓市限購(gòu)令”態(tài)度進(jìn)行調(diào)查,抽調(diào)了50名市民,他們?cè)率杖腩l數(shù)分布表和對(duì)“樓市限購(gòu)令”贊成人數(shù)如下表:月收入(單位:百元)頻數(shù)51055頻率0.10.20.10.1贊成人數(shù)4812521(1)若所抽調(diào)的50名市民中,收入在的有15名,求,,的值,并完成頻率分布直方圖.(2)若從收入(單位:百元)在的被調(diào)查者中隨機(jī)選取2人進(jìn)行追蹤調(diào)查,選中的2人中恰有人贊成“樓市限購(gòu)令”,求的分布列與數(shù)學(xué)期望.(3)從月收入頻率分布表的6組市民中分別隨機(jī)抽取3名市民,恰有一組的3名市民都不贊成“樓市限購(gòu)令”,根據(jù)表格數(shù)據(jù),判斷這3名市民來(lái)自哪組的可能性最大?請(qǐng)直接寫出你的判斷結(jié)果.21.(12分)已知函數(shù),.(Ⅰ)當(dāng)時(shí),求曲線在處的切線方程;(Ⅱ)求函數(shù)在上的最小值;(Ⅲ)若函數(shù),當(dāng)時(shí),的最大值為,求證:.22.(10分)已知定點(diǎn),,直線、相交于點(diǎn),且它們的斜率之積為,記動(dòng)點(diǎn)的軌跡為曲線。(1)求曲線的方程;(2)過(guò)點(diǎn)的直線與曲線交于、兩點(diǎn),是否存在定點(diǎn),使得直線與斜率之積為定值,若存在,求出坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
先求得全集包含的元素,由此求得集合的補(bǔ)集.【詳解】由解得,故,所以,故選A.【點(diǎn)睛】本小題主要考查補(bǔ)集的概念及運(yùn)算,考查一元二次不等式的解法,屬于基礎(chǔ)題.2、A【解析】
計(jì)算出黑色部分的面積與總面積的比,即可得解.【詳解】由,∴.故選:A【點(diǎn)睛】本題考查了面積型幾何概型的概率的計(jì)算,屬于基礎(chǔ)題.3、B【解析】
令,則,由圖象分析可知在上有兩個(gè)不同的根,再利用一元二次方程根的分布即可解決.【詳解】令,則,如圖與頂多只有3個(gè)不同交點(diǎn),要使關(guān)于的方程有六個(gè)不相等的實(shí)數(shù)根,則有兩個(gè)不同的根,設(shè)由根的分布可知,,解得.故選:B.【點(diǎn)睛】本題考查復(fù)合方程根的個(gè)數(shù)問(wèn)題,涉及到一元二次方程根的分布,考查學(xué)生轉(zhuǎn)化與化歸和數(shù)形結(jié)合的思想,是一道中檔題.4、D【解析】
先確定集合中元素的個(gè)數(shù),再得子集個(gè)數(shù).【詳解】由題意,有三個(gè)元素,其子集有8個(gè).故選:D.【點(diǎn)睛】本題考查子集的個(gè)數(shù)問(wèn)題,含有個(gè)元素的集合其子集有個(gè),其中真子集有個(gè).5、B【解析】
可判斷函數(shù)在上單調(diào)遞增,且,所以.【詳解】在上單調(diào)遞增,且,所以.故選:B【點(diǎn)睛】本題主要考查了函數(shù)單調(diào)性的判定,指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì),利用單調(diào)性比大小等知識(shí),考查了學(xué)生的運(yùn)算求解能力.6、B【解析】
根據(jù)所給不等式組,畫出不等式表示的可行域,將目標(biāo)函數(shù)化為直線方程,平移后即可確定取值范圍.【詳解】實(shí)數(shù)滿足的約束條件,畫出可行域如下圖所示:將線性目標(biāo)函數(shù)化為,則將平移,平移后結(jié)合圖像可知,當(dāng)經(jīng)過(guò)原點(diǎn)時(shí)截距最小,;當(dāng)經(jīng)過(guò)時(shí),截距最大值,,所以線性目標(biāo)函數(shù)的取值范圍為,故選:B.【點(diǎn)睛】本題考查了線性規(guī)劃的簡(jiǎn)單應(yīng)用,線性目標(biāo)函數(shù)取值范圍的求法,屬于基礎(chǔ)題.7、A【解析】
由余弦定理求出角,再由三角形面積公式計(jì)算即可.【詳解】由余弦定理得:,又,所以得,故△ABC的面積.故選:A【點(diǎn)睛】本題主要考查了余弦定理的應(yīng)用,三角形的面積公式,考查了學(xué)生的運(yùn)算求解能力.8、C【解析】
畫出幾何體的直觀圖,利用三視圖的數(shù)據(jù)求解幾何體的表面積即可.【詳解】解:幾何體的直觀圖如圖,是正方體的一部分,P?ABC,正方體的棱長(zhǎng)為2,
該幾何體的表面積:.故選C.【點(diǎn)睛】本題考查三視圖求解幾何體的直觀圖的表面積,判斷幾何體的形狀是解題的關(guān)鍵.9、B【解析】
解出兩個(gè)不等式的解集,根據(jù)充分條件和必要條件的定義,即可得到本題答案.【詳解】由,得,又由,得,因?yàn)榧?,所以“”是“”的必要不充分條件.故選:B【點(diǎn)睛】本題主要考查必要不充分條件的判斷,其中涉及到絕對(duì)值不等式和一元二次不等式的解法.10、A【解析】
由題意求得c與的值,結(jié)合隱含條件列式求得a2,b2,則答案可求.【詳解】由題意,2c=8,則c=4,又,且a2+b2=c2,解得a2=4,b2=12.∴雙曲線C的方程為.故選:A.【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單性質(zhì),屬于基礎(chǔ)題.11、D【解析】
首先判斷循環(huán)結(jié)構(gòu)類型,得到判斷框內(nèi)的語(yǔ)句性質(zhì),然后對(duì)循環(huán)體進(jìn)行分析,找出循環(huán)規(guī)律,判斷輸出結(jié)果與循環(huán)次數(shù)以及的關(guān)系,最終得出選項(xiàng).【詳解】經(jīng)判斷此循環(huán)為“直到型”結(jié)構(gòu),判斷框?yàn)樘鲅h(huán)的語(yǔ)句,第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,此時(shí)退出循環(huán),根據(jù)判斷框內(nèi)為跳出循環(huán)的語(yǔ)句,,故選D.【點(diǎn)睛】題主要考查程序框圖的循環(huán)結(jié)構(gòu)流程圖,屬于中檔題.解決程序框圖問(wèn)題時(shí)一定注意以下幾點(diǎn):(1)不要混淆處理框和輸入框;(2)注意區(qū)分程序框圖是條件分支結(jié)構(gòu)還是循環(huán)結(jié)構(gòu);(3)注意區(qū)分當(dāng)型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu);(4)處理循環(huán)結(jié)構(gòu)的問(wèn)題時(shí)一定要正確控制循環(huán)次數(shù);(5)要注意各個(gè)框的順序,(6)在給出程序框圖求解輸出結(jié)果的試題中只要按照程序框圖規(guī)定的運(yùn)算方法逐次計(jì)算,直到達(dá)到輸出條件即可.12、B【解析】
先求出直線l的方程為y(x﹣c),與y=±x聯(lián)立,可得A,B的縱坐標(biāo),利用,求出a,b的關(guān)系,即可求出該雙曲線的離心率.【詳解】雙曲線1(a>b>0)的漸近線方程為y=±x,∵直線l的傾斜角是漸近線OA傾斜角的2倍,∴kl,∴直線l的方程為y(x﹣c),與y=±x聯(lián)立,可得y或y,∵,∴2?,∴ab,∴c=2b,∴e.故選B.【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單性質(zhì),考查向量知識(shí),考查學(xué)生的計(jì)算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】試題分析:根據(jù)題意,記白球?yàn)锳,紅球?yàn)锽,黃球?yàn)?,則一次取出2只球,基本事件為、、、、、共6種,其中2只球的顏色不同的是、、、、共5種;所以所求的概率是.考點(diǎn):古典概型概率14、,【解析】
根據(jù)特稱命題的否定為全稱命題得到結(jié)果即可.【詳解】解:因?yàn)樘胤Q命題的否定是全稱命題,所以,命題,則該命題的否定是:,故答案為:,.【點(diǎn)睛】本題考查全稱命題與特稱命題的否定關(guān)系,屬于基礎(chǔ)題.15、【解析】
依題意得,再求點(diǎn)到平面的距離為點(diǎn)到直線的距離,用公式所以即可得出答案.【詳解】解:正三棱柱的所有棱長(zhǎng)均為2,則,點(diǎn)到平面的距離為點(diǎn)到直線的距離所以,所以.故答案為:【點(diǎn)睛】本題考查椎體的體積公式,考查運(yùn)算能力,是基礎(chǔ)題.16、10【解析】
先求出a,b,根據(jù)分層抽樣的比例引入正整數(shù)k表示n,從而得出的最小值.【詳解】由題意得,a=0.2,b=80,由表可知,燈泡樣品第一組有40個(gè),第二組有60個(gè),第三組有80個(gè),第四組有20個(gè),所以四個(gè)組的比例為2:3:4:1,所以按分層抽樣法,購(gòu)買的燈泡數(shù)為n=2k+3k+4k+k=10k(),所以的最小值為10.【點(diǎn)睛】本題考查分層抽樣基本原理的應(yīng)用,涉及抽樣比、總體數(shù)量、每層樣本數(shù)量的計(jì)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、;證明見(jiàn)解析.【解析】
當(dāng)時(shí),集合共有個(gè)子集,即可求出結(jié)果;分類討論,利用數(shù)學(xué)歸納法證明.【詳解】當(dāng)時(shí),集合共有個(gè)子集,所以;①當(dāng)時(shí),,由可知,,此時(shí)令,,,,滿足對(duì)任意,都有,且;②假設(shè)當(dāng)時(shí),存在有序集合組滿足題意,且,則當(dāng)時(shí),集合的子集個(gè)數(shù)為個(gè),因?yàn)槭?的整數(shù)倍,所以令,,,,且恒成立,即滿足對(duì)任意,都有,且,綜上,原命題得證.【點(diǎn)睛】本題考查集合的自己個(gè)數(shù)的研究,結(jié)合數(shù)學(xué)歸納法的應(yīng)用,屬于難題.18、(1)單調(diào)增區(qū)間,單調(diào)減區(qū)間為,;(2)有2個(gè)零點(diǎn),證明見(jiàn)解析;(3)【解析】
對(duì)函數(shù)求導(dǎo),利用導(dǎo)數(shù)的正負(fù)判斷函數(shù)的單調(diào)區(qū)間即可;函數(shù)有2個(gè)零點(diǎn).根據(jù)函數(shù)的零點(diǎn)存在性定理即可證明;記函數(shù),求導(dǎo)后利用單調(diào)性求得,由零點(diǎn)存在性定理及單調(diào)性知存在唯一的,使,求得為分段函數(shù),求導(dǎo)后分情況討論:①當(dāng)時(shí),利用函數(shù)的單調(diào)性將問(wèn)題轉(zhuǎn)化為的問(wèn)題;②當(dāng)時(shí),當(dāng)時(shí),在上恒成立,從而求得的取值范圍.【詳解】(1)由題意知,,列表如下:020極小值極大值所以函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為,.(2)函數(shù)有2個(gè)零點(diǎn).證明如下:因?yàn)闀r(shí),所以,因?yàn)?所以在恒成立,在上單調(diào)遞增,由,,且在上單調(diào)遞增且連續(xù)知,函數(shù)在上僅有一個(gè)零點(diǎn),由(1)可得時(shí),,即,故時(shí),,所以,由得,平方得,所以,因?yàn)?,所以在上恒成?所以函數(shù)在上單調(diào)遞減,因?yàn)?所以,由,,且在上單調(diào)遞減且連續(xù)得在上僅有一個(gè)零點(diǎn),綜上可知:函數(shù)有2個(gè)零點(diǎn).(3)記函數(shù),下面考察的符號(hào).求導(dǎo)得.當(dāng)時(shí)恒成立.當(dāng)時(shí),因?yàn)?,所以.∴在上恒成立,故在上單調(diào)遞減.∵,∴,又因?yàn)樵谏线B續(xù),所以由函數(shù)的零點(diǎn)存在性定理得存在唯一的,使,∴,因?yàn)?所以∴因?yàn)楹瘮?shù)在上單調(diào)遞增,,所以在,上恒成立.①當(dāng)時(shí),在上恒成立,即在上恒成立.記,則,當(dāng)變化時(shí),,變化情況如下表:極小值∴,故,即.②當(dāng)時(shí),,當(dāng)時(shí),在上恒成立.綜合(1)(2)知,實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間、極值、最值和利用零點(diǎn)存在性定理判斷函數(shù)零點(diǎn)個(gè)數(shù)、利用分離參數(shù)法求參數(shù)的取值范圍;考查轉(zhuǎn)化與化歸能力、邏輯推理能力、運(yùn)算求解能力;通過(guò)構(gòu)造函數(shù),利用零點(diǎn)存在性定理判斷其零點(diǎn),從而求出函數(shù)的表達(dá)式是求解本題的關(guān)鍵;屬于綜合型強(qiáng)、難度大型試題.19、(1)(2)10【解析】
(1)由二倍角的正弦公式以及正弦定理,可得,再根據(jù)二倍角的余弦公式計(jì)算即可;(2)由已知可得,利用余弦定理解出,由已知計(jì)算出與,再根據(jù)三角形的面積公式求出結(jié)果即可.【詳解】(1),,在中,由正弦定理得,,又,,,(2),,,由余弦定理得,,則,化簡(jiǎn)得,,解得或(負(fù)值舍去),,,,,,的面積.【點(diǎn)睛】本題考查了三角形面積公式以及正弦定理、余弦定理的應(yīng)用,考查了二倍角公式的應(yīng)用,考查了運(yùn)算能力,屬于基礎(chǔ)題.20、(1),頻率分布直方圖見(jiàn)解析;(2)分布列見(jiàn)解析,;(3)來(lái)自的可能性最大.【解析】
(1)由頻率和為可知,根據(jù)求得,從而計(jì)算得到頻數(shù),補(bǔ)全頻率分布表后可畫出頻率分布直方圖;(2)首先確定的所有可能取值,由超幾何分布概率公式可計(jì)算求得每個(gè)取值對(duì)應(yīng)的概率,由此得到分布列;根據(jù)數(shù)學(xué)期望的計(jì)算公式可求得期望;(3)根據(jù)中不贊成比例最大可知來(lái)自的可能性最大.【詳解】(1)由頻率分布表得:,即.收入在的有名,,,,則頻率分布直方圖如下:(2)收入在中贊成人數(shù)為,不贊成人數(shù)為,可能取值為,則;;,的分布列為:.(3)來(lái)自的可能性更大.【點(diǎn)睛】本題考查概率與統(tǒng)計(jì)部分知識(shí)的綜合應(yīng)用,涉及到頻數(shù)、頻率的計(jì)算、頻率分布直方圖的繪制、服從于超幾何分布的隨機(jī)變量的分布列與數(shù)學(xué)期望的求解、統(tǒng)計(jì)估計(jì)等知識(shí);考查學(xué)生的運(yùn)算和求解能力.21、(Ⅰ)(Ⅱ)見(jiàn)解析;(Ⅲ)見(jiàn)解析.【解析】試題分析:(Ⅰ)由題,所以故,,代入點(diǎn)斜式可得曲線在處的切線方程;(Ⅱ)由題(1)當(dāng)時(shí),在上單調(diào)遞增.則函數(shù)在上的最小值是(2)當(dāng)時(shí),令,即,令,即(i)當(dāng),即時(shí),在上單調(diào)遞增,所以在上的最小值是(ii)當(dāng),即時(shí),由的單調(diào)性可得在上的最小值是(i
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 印刷企業(yè)社會(huì)責(zé)任考核試卷
- 燃?xì)庠O(shè)備操作與維護(hù)培訓(xùn)考核試卷
- 電力設(shè)備油浸式變壓器維護(hù)與檢修考核試卷
- 2024年汽車租賃公司掛靠車輛租賃與車輛維修合同3篇
- 電子商城web課程設(shè)計(jì)
- 2024年油氣田開(kāi)發(fā)居間服務(wù)合同
- 禮儀心理課程設(shè)計(jì)
- 玉米淀粉在D打印材料中的應(yīng)用與工藝探索考核試卷
- 2024年度大件運(yùn)輸?shù)缆吠ㄐ凶C合同模板詳盡解析3篇
- 穩(wěn)流電源電路課程設(shè)計(jì)
- 2024-2025學(xué)年安徽省合肥市巢湖市三年級(jí)數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)測(cè)試試題含解析
- 廣東省佛山市南海區(qū)·三水區(qū)2023-2024學(xué)年七年級(jí)上學(xué)期期末數(shù)學(xué)試題
- 減肥及代謝手術(shù)課件
- 2025年中國(guó)社區(qū)團(tuán)購(gòu)行業(yè)發(fā)展環(huán)境、運(yùn)行態(tài)勢(shì)及投資前景分析報(bào)告(智研咨詢發(fā)布)
- 2024年度健康醫(yī)療服務(wù)合同平安好醫(yī)生(2024版)3篇
- 交通運(yùn)輸安全風(fēng)險(xiǎn)管控制度
- 《中國(guó)傳統(tǒng)民居建筑》課件
- JJF 2163-2024漆膜劃格器校準(zhǔn)規(guī)范
- 肺炎支原體肺炎-4
- 【教案】Unit4+Section+B+(1a-2b)+教學(xué)設(shè)計(jì)人教版(2024)七年級(jí)英語(yǔ)上冊(cè)++
- 1646 法律職業(yè)倫理
評(píng)論
0/150
提交評(píng)論