版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
遼寧省遼源市金鼎高級(jí)中學(xué)2025屆高三第四次模擬考試數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),則()A. B. C. D.2.復(fù)數(shù)(i是虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知全集,集合,則=()A. B.C. D.4.已知拋物線的焦點(diǎn)為,對(duì)稱軸與準(zhǔn)線的交點(diǎn)為,為上任意一點(diǎn),若,則()A.30° B.45° C.60° D.75°5.“哥德巴赫猜想”是近代三大數(shù)學(xué)難題之一,其內(nèi)容是:一個(gè)大于2的偶數(shù)都可以寫成兩個(gè)質(zhì)數(shù)(素?cái)?shù))之和,也就是我們所謂的“1+1”問題.它是1742年由數(shù)學(xué)家哥德巴赫提出的,我國數(shù)學(xué)家潘承洞、王元、陳景潤等在哥德巴赫猜想的證明中做出相當(dāng)好的成績.若將6拆成兩個(gè)正整數(shù)的和,則拆成的和式中,加數(shù)全部為質(zhì)數(shù)的概率為()A. B. C. D.6.某歌手大賽進(jìn)行電視直播,比賽現(xiàn)場有名特約嘉賓給每位參賽選手評(píng)分,場內(nèi)外的觀眾可以通過網(wǎng)絡(luò)平臺(tái)給每位參賽選手評(píng)分.某選手參加比賽后,現(xiàn)場嘉賓的評(píng)分情況如下表,場內(nèi)外共有數(shù)萬名觀眾參與了評(píng)分,組織方將觀眾評(píng)分按照,,分組,繪成頻率分布直方圖如下:嘉賓評(píng)分嘉賓評(píng)分的平均數(shù)為,場內(nèi)外的觀眾評(píng)分的平均數(shù)為,所有嘉賓與場內(nèi)外的觀眾評(píng)分的平均數(shù)為,則下列選項(xiàng)正確的是()A. B. C. D.7.已知函數(shù),若恒成立,則滿足條件的的個(gè)數(shù)為()A.0 B.1 C.2 D.38.已知雙曲線的一條漸近線經(jīng)過圓的圓心,則雙曲線的離心率為()A. B. C. D.29.命題:的否定為A. B.C. D.10.執(zhí)行如圖所示的程序框圖,當(dāng)輸出的時(shí),則輸入的的值為()A.-2 B.-1 C. D.11.已知函數(shù)若對(duì)區(qū)間內(nèi)的任意實(shí)數(shù),都有,則實(shí)數(shù)的取值范圍是()A. B. C. D.12.已知向量,,設(shè)函數(shù),則下列關(guān)于函數(shù)的性質(zhì)的描述正確的是A.關(guān)于直線對(duì)稱 B.關(guān)于點(diǎn)對(duì)稱C.周期為 D.在上是增函數(shù)二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,則____________.14.一次考試后,某班全班50個(gè)人數(shù)學(xué)成績的平均分為正數(shù),若把當(dāng)成一個(gè)同學(xué)的分?jǐn)?shù),與原來的50個(gè)分?jǐn)?shù)一起,算出這51個(gè)分?jǐn)?shù)的平均值為,則_________.15.已知實(shí)數(shù),滿足約束條件,則的最小值為______.16.如圖,直線是曲線在處的切線,則________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)(1)證明:當(dāng)時(shí),;(2)當(dāng)時(shí),求整數(shù)的最大值.(參考數(shù)據(jù):,)18.(12分)在直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)求曲線的普通方程和直線的直角坐標(biāo)方程;(2)若射線的極坐標(biāo)方程為().設(shè)與相交于點(diǎn),與相交于點(diǎn),求.19.(12分)設(shè)函數(shù).(1)時(shí),求的單調(diào)區(qū)間;(2)當(dāng)時(shí),設(shè)的最小值為,若恒成立,求實(shí)數(shù)t的取值范圍.20.(12分)已知曲線:和:(為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,且兩種坐標(biāo)系中取相同的長度單位.(1)求曲線的直角坐標(biāo)方程和的方程化為極坐標(biāo)方程;(2)設(shè)與,軸交于,兩點(diǎn),且線段的中點(diǎn)為.若射線與,交于,兩點(diǎn),求,兩點(diǎn)間的距離.21.(12分)如圖,在直三棱柱中,分別是中點(diǎn),且,.求證:平面;求點(diǎn)到平面的距離.22.(10分)如圖,平面四邊形中,,是上的一點(diǎn),是的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且.(1)證明:平面平面;(2)求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】試題分析:,.故C正確.考點(diǎn):復(fù)合函數(shù)求值.2、B【解析】
利用復(fù)數(shù)的四則運(yùn)算以及幾何意義即可求解.【詳解】解:,則復(fù)數(shù)(i是虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為:,位于第二象限.故選:B.【點(diǎn)睛】本題考查了復(fù)數(shù)的四則運(yùn)算以及復(fù)數(shù)的幾何意義,屬于基礎(chǔ)題.3、D【解析】
先計(jì)算集合,再計(jì)算,最后計(jì)算.【詳解】解:,,.故選:.【點(diǎn)睛】本題主要考查了集合的交,補(bǔ)混合運(yùn)算,注意分清集合間的關(guān)系,屬于基礎(chǔ)題.4、C【解析】
如圖所示:作垂直于準(zhǔn)線交準(zhǔn)線于,則,故,得到答案.【詳解】如圖所示:作垂直于準(zhǔn)線交準(zhǔn)線于,則,在中,,故,即.故選:.【點(diǎn)睛】本題考查了拋物線中角度的計(jì)算,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.5、A【解析】
列出所有可以表示成和為6的正整數(shù)式子,找到加數(shù)全部為質(zhì)數(shù)的只有,利用古典概型求解即可.【詳解】6拆成兩個(gè)正整數(shù)的和含有的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),而加數(shù)全為質(zhì)數(shù)的有(3,3),根據(jù)古典概型知,所求概率為.故選:A.【點(diǎn)睛】本題主要考查了古典概型,基本事件,屬于容易題.6、C【解析】
計(jì)算出、,進(jìn)而可得出結(jié)論.【詳解】由表格中的數(shù)據(jù)可知,,由頻率分布直方圖可知,,則,由于場外有數(shù)萬名觀眾,所以,.故選:B.【點(diǎn)睛】本題考查平均數(shù)的大小比較,涉及平均數(shù)公式以及頻率分布直方圖中平均數(shù)的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.7、C【解析】
由不等式恒成立問題分類討論:①當(dāng),②當(dāng),③當(dāng),考查方程的解的個(gè)數(shù),綜合①②③得解.【詳解】①當(dāng)時(shí),,滿足題意,②當(dāng)時(shí),,,,,故不恒成立,③當(dāng)時(shí),設(shè),,令,得,,得,下面考查方程的解的個(gè)數(shù),設(shè)(a),則(a)由導(dǎo)數(shù)的應(yīng)用可得:(a)在為減函數(shù),在,為增函數(shù),則(a),即有一解,又,均為增函數(shù),所以存在1個(gè)使得成立,綜合①②③得:滿足條件的的個(gè)數(shù)是2個(gè),故選:.【點(diǎn)睛】本題考查了不等式恒成立問題及利用導(dǎo)數(shù)研究函數(shù)的解得個(gè)數(shù),重點(diǎn)考查了分類討論的數(shù)學(xué)思想方法,屬難度較大的題型.8、B【解析】
求出圓心,代入漸近線方程,找到的關(guān)系,即可求解.【詳解】解:,一條漸近線,故選:B【點(diǎn)睛】利用的關(guān)系求雙曲線的離心率,是基礎(chǔ)題.9、C【解析】
命題為全稱命題,它的否定為特稱命題,將全稱量詞改為存在量詞,并將結(jié)論否定,可知命題的否定為,故選C.10、B【解析】若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,與題意輸出的矛盾;若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,符合題意;若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,與題意輸出的矛盾;若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,與題意輸出的矛盾;綜上選B.11、C【解析】分析:先求導(dǎo),再對(duì)a分類討論求函數(shù)的單調(diào)區(qū)間,再畫圖分析轉(zhuǎn)化對(duì)區(qū)間內(nèi)的任意實(shí)數(shù),都有,得到關(guān)于a的不等式組,再解不等式組得到實(shí)數(shù)a的取值范圍.詳解:由題得.當(dāng)a<1時(shí),,所以函數(shù)f(x)在單調(diào)遞減,因?yàn)閷?duì)區(qū)間內(nèi)的任意實(shí)數(shù),都有,所以,所以故a≥1,與a<1矛盾,故a<1矛盾.當(dāng)1≤a<e時(shí),函數(shù)f(x)在[0,lna]單調(diào)遞增,在(lna,1]單調(diào)遞減.所以因?yàn)閷?duì)區(qū)間內(nèi)的任意實(shí)數(shù),都有,所以,所以即令,所以所以函數(shù)g(a)在(1,e)上單調(diào)遞減,所以,所以當(dāng)1≤a<e時(shí),滿足題意.當(dāng)a時(shí),函數(shù)f(x)在(0,1)單調(diào)遞增,因?yàn)閷?duì)區(qū)間內(nèi)的任意實(shí)數(shù),都有,所以,故1+1,所以故綜上所述,a∈.故選C.點(diǎn)睛:本題的難點(diǎn)在于“對(duì)區(qū)間內(nèi)的任意實(shí)數(shù),都有”的轉(zhuǎn)化.由于是函數(shù)的問題,所以我們要聯(lián)想到利用函數(shù)的性質(zhì)(單調(diào)性、奇偶性、周期性、對(duì)稱性、最值、極值等)來分析解答問題.本題就是把這個(gè)條件和函數(shù)的單調(diào)性和最值聯(lián)系起來,完成了數(shù)學(xué)問題的等價(jià)轉(zhuǎn)化,找到了問題的突破口.12、D【解析】
當(dāng)時(shí),,∴f(x)不關(guān)于直線對(duì)稱;當(dāng)時(shí),,∴f(x)關(guān)于點(diǎn)對(duì)稱;f(x)得周期,當(dāng)時(shí),,∴f(x)在上是增函數(shù).本題選擇D選項(xiàng).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)并集的定義計(jì)算即可.【詳解】由集合的并集,知.故答案為:【點(diǎn)睛】本題考查集合的并集運(yùn)算,屬于容易題.14、1【解析】
根據(jù)均值的定義計(jì)算.【詳解】由題意,∴.故答案為:1.【點(diǎn)睛】本題考查均值的概念,屬于基礎(chǔ)題.15、【解析】
作出滿足約束條件的可行域,將目標(biāo)函數(shù)視為可行解與點(diǎn)的斜率,觀察圖形斜率最小在點(diǎn)B處,聯(lián)立,解得點(diǎn)B坐標(biāo),即可求得答案.【詳解】作出滿足約束條件的可行域,該目標(biāo)函數(shù)視為可行解與點(diǎn)的斜率,故由題可知,聯(lián)立得,聯(lián)立得所以,故所以的最小值為故答案為:【點(diǎn)睛】本題考查分式型目標(biāo)函數(shù)的線性規(guī)劃問題,屬于簡單題.16、.【解析】
求出切線的斜率,即可求出結(jié)論.【詳解】由圖可知直線過點(diǎn),可求出直線的斜率,由導(dǎo)數(shù)的幾何意義可知,.故答案為:.【點(diǎn)睛】本題考查導(dǎo)數(shù)與曲線的切線的幾何意義,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】
(1)將代入函數(shù)解析式可得,構(gòu)造函數(shù),求得并令,由導(dǎo)函數(shù)符號(hào)判斷函數(shù)單調(diào)性并求得最大值,由即可證明恒成立,即不等式得證.(2)對(duì)函數(shù)求導(dǎo),變形后討論當(dāng)時(shí)的函數(shù)單調(diào)情況:當(dāng)時(shí),可知滿足題意;將不等式化簡后構(gòu)造函數(shù),利用導(dǎo)函數(shù)求得極值點(diǎn)與函數(shù)的單調(diào)性,從而求得最小值為,分別依次代入檢驗(yàn)的符號(hào),即可確定整數(shù)的最大值;當(dāng)時(shí)不滿足題意,因?yàn)榍笳麛?shù)的最大值,所以時(shí)無需再討論.【詳解】(1)證明:當(dāng)時(shí)代入可得,令,,則,令解得,當(dāng)時(shí),所以在單調(diào)遞增,當(dāng)時(shí),所以在單調(diào)遞減,所以,則,即成立.(2)函數(shù)則,若時(shí),當(dāng)時(shí),,則在時(shí)單調(diào)遞減,所以,即當(dāng)時(shí)成立;所以此時(shí)需滿足的整數(shù)解即可,將不等式化簡可得,令則令解得,當(dāng)時(shí),即在內(nèi)單調(diào)遞減,當(dāng)時(shí),即在內(nèi)單調(diào)遞增,所以當(dāng)時(shí)取得最小值,則,,,所以此時(shí)滿足的整數(shù)的最大值為;當(dāng)時(shí),在時(shí),此時(shí),與題意矛盾,所以不成立.因?yàn)榍笳麛?shù)的最大值,所以時(shí)無需再討論,綜上所述,當(dāng)時(shí),整數(shù)的最大值為.【點(diǎn)睛】本題考查了導(dǎo)數(shù)在證明不等式中的應(yīng)用,導(dǎo)數(shù)與函數(shù)單調(diào)性、極值、最值的關(guān)系和應(yīng)用,構(gòu)造函數(shù)法求最值,并判斷函數(shù)值法符號(hào),綜合性強(qiáng),屬于難題.18、(1)曲線的普通方程為;直線的直角坐標(biāo)方程為(2)【解析】
(1)利用消去參數(shù),將曲線的參數(shù)方程化成普通方程,利用互化公式,將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)根據(jù)(1)求出曲線的極坐標(biāo)方程,分別聯(lián)立射線與曲線以及射線與直線的極坐標(biāo)方程,求出和,即可求出.【詳解】解:(1)因?yàn)椋閰?shù)),所以消去參數(shù),得,所以曲線的普通方程為.因?yàn)樗灾本€的直角坐標(biāo)方程為.(2)曲線的極坐標(biāo)方程為.設(shè)的極徑分別為和,將()代入,解得,將()代入,解得.故.【點(diǎn)睛】本題考查利用消參法將參數(shù)方程化成普通方程以及利用互化公式將極坐標(biāo)方程化為直角坐標(biāo)方程,還考查極徑的運(yùn)用和兩點(diǎn)間距離,屬于中檔題.19、(1)的增區(qū)間為,減區(qū)間為;(2).【解析】
(1)求出函數(shù)的導(dǎo)數(shù),由于參數(shù)的范圍對(duì)導(dǎo)數(shù)的符號(hào)有影響,對(duì)參數(shù)分類,再研究函數(shù)的單調(diào)區(qū)間;(2)由(1)的結(jié)論,求出的表達(dá)式,由于恒成立,故求出的最大值,即得實(shí)數(shù)的取值范圍的左端點(diǎn).【詳解】解:(1)解:,當(dāng)時(shí),,解得的增區(qū)間為,解得的減區(qū)間為.(2)解:若,由得,由得,所以函數(shù)的減區(qū)間為,增區(qū)間為;,因?yàn)椋?,,令,則恒成立,由于,當(dāng)時(shí),,故函數(shù)在上是減函數(shù),所以成立;當(dāng)時(shí),若則,故函數(shù)在上是增函數(shù),即對(duì)時(shí),,與題意不符;綜上,為所求.【點(diǎn)睛】本題考查導(dǎo)數(shù)在最大值與最小值問題中的應(yīng)用,求解本題關(guān)鍵是根據(jù)導(dǎo)數(shù)研究出函數(shù)的單調(diào)性,由最值的定義得出函數(shù)的最值,本題中第一小題是求出函數(shù)的單調(diào)區(qū)間,第二小題是一個(gè)求函數(shù)的最值的問題,此類題運(yùn)算量較大,轉(zhuǎn)化靈活,解題時(shí)極易因?yàn)樽冃闻c運(yùn)算出錯(cuò),故做題時(shí)要認(rèn)真仔細(xì).20、(1),;(2)1.【解析】
(1)利用正弦的和角公式,結(jié)合極坐標(biāo)化為直角坐標(biāo)的公式,即可求得曲線的直角坐標(biāo)方程;先寫出曲線的普通方程,再利用公式化簡為極坐標(biāo)即可;(2)先求出的直角坐標(biāo),據(jù)此求得中點(diǎn)的直角坐標(biāo),將其轉(zhuǎn)化為極坐標(biāo),聯(lián)立曲線的極坐標(biāo)方程,即可求得兩點(diǎn)的極坐標(biāo),則距離可解.【詳解】(1):可整理為,利用公式可得其直角坐標(biāo)方程為:,:的普通方程為,利用公式可得其極坐標(biāo)方程為(2)由(1)可得的直角坐標(biāo)方程為,故容易得,,∴,∴的極坐標(biāo)方程為,把代入得,.把代入得,.∴,即,兩點(diǎn)間的距離為1.【點(diǎn)睛】本題考查極坐標(biāo)方程和直角坐標(biāo)方程之間的轉(zhuǎn)化,涉及參數(shù)方程轉(zhuǎn)化為普通方程,以及在極坐標(biāo)系中求兩點(diǎn)之間的距離,屬綜合基礎(chǔ)題.21、(1)詳見解析;(2).【解析】
(1)利用線面垂直的判定定理和性質(zhì)定理即可證明;(2)取中點(diǎn)為,則,證得平面,利用等體積法求解即可.【詳解】(1)因?yàn)?,,,是的中點(diǎn),,為直三棱柱,所以平面,因?yàn)闉橹悬c(diǎn),所以平面,,又,平面(2),又分別是中點(diǎn),.由(1)知,,又平面,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 美術(shù)館策展人招聘協(xié)議
- 國際文化園精裝房施工合同
- 酒店兼職廚師合同范本
- 2025年度蘭州租賃合同范本(含租賃物使用監(jiān)督)3篇
- 2024年度電子元器件展覽會(huì)策劃與實(shí)施服務(wù)合同3篇
- 2025年智慧城市債券擔(dān)保合同范本3篇
- 2024年辣椒干購買合同
- 2024年購房中介服務(wù)全條款合同
- 2025版企業(yè)辦公耗材一站式采購合同3篇
- 2025年度鍋爐安裝與遠(yuǎn)程監(jiān)控維護(hù)服務(wù)合同
- SFC15(發(fā)送)和SFC14(接收)組態(tài)步驟
- 旅行社公司章程53410
- 小學(xué)班主任工作總結(jié)PPT
- 起世經(jīng)白話解-
- 螺桿式制冷壓縮機(jī)操作規(guī)程完整
- 頜下腺囊腫摘除手術(shù)
- 五金件成品檢驗(yàn)報(bào)告
- CDN基礎(chǔ)介紹PPT課件
- SPC八大控制圖自動(dòng)生成器v1.01
- 復(fù)晶砂、粉在硅溶膠精密鑄造面層制殼中的應(yīng)用
- 實(shí)驗(yàn)室設(shè)備和分析儀器的確認(rèn)和驗(yàn)證
評(píng)論
0/150
提交評(píng)論