版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
遼寧省阜新市阜蒙縣育才高級中學(xué)2025屆高考壓軸卷數(shù)學(xué)試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.閱讀下側(cè)程序框圖,為使輸出的數(shù)據(jù)為31,則①處應(yīng)填的數(shù)字為A.4 B.5 C.6 D.72.《九章算術(shù)》勾股章有一“引葭赴岸”問題“今有餅池徑丈,葭生其中,出水兩尺,引葭赴岸,適與岸齊,問水深,葭各幾何?”,其意思是:有一個直徑為一丈的圓柱形水池,池中心生有一顆類似蘆葦?shù)闹参?,露出水面兩尺,若把它引向岸邊,正好與岸邊齊,問水有多深,該植物有多高?其中一丈等于十尺,如圖若從該葭上隨機取一點,則該點取自水下的概率為()A. B. C. D.3.若函數(shù)的圖象如圖所示,則的解析式可能是()A. B. C. D.4.總體由編號01,,02,…,19,20的20個個體組成.利用下面的隨機數(shù)表選取5個個體,選取方法是隨機數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為7816
6572
0802
6314
0702
4369
9728
0198
3204
9234
4935
8200
3623
4869
6938
7481
A.08 B.07 C.02 D.015.已知集合,則()A. B. C. D.6.設(shè)全集集合,則()A. B. C. D.7.已知函數(shù),若函數(shù)的圖象恒在軸的上方,則實數(shù)的取值范圍為()A. B. C. D.8.已知函數(shù)在上可導(dǎo)且恒成立,則下列不等式中一定成立的是()A.、B.、C.、D.、9.已知平面和直線a,b,則下列命題正確的是()A.若∥,b∥,則∥ B.若,,則∥C.若∥,,則 D.若,b∥,則10.雙曲線x26-y23=1的漸近線與圓(x-3)2+y2=A.3 B.2C.3 D.611.已知,,則()A. B. C. D.12.已知隨機變量服從正態(tài)分布,且,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.正方體的棱長為2,是它的內(nèi)切球的一條弦(我們把球面上任意兩點之間的線段稱為球的弦),為正方體表面上的動點,當(dāng)弦的長度最大時,的取值范圍是______.14.在平面直角坐標(biāo)系中,點P在直線上,過點P作圓C:的一條切線,切點為T.若,則的長是______.15.已知雙曲線(a>0,b>0)的兩個焦點為、,點P是第一象限內(nèi)雙曲線上的點,且,tan∠PF2F1=﹣2,則雙曲線的離心率為_____.16.若復(fù)數(shù)滿足,其中是虛數(shù)單位,是的共軛復(fù)數(shù),則________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)求曲線在點處的切線方程;(2)求函數(shù)的極小值;(3)求函數(shù)的零點個數(shù).18.(12分)記無窮數(shù)列的前項中最大值為,最小值為,令,則稱是“極差數(shù)列”.(1)若,求的前項和;(2)證明:的“極差數(shù)列”仍是;(3)求證:若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.19.(12分)已知函數(shù)().(1)討論的單調(diào)性;(2)若對,恒成立,求的取值范圍.20.(12分)某學(xué)生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設(shè)計了一個實驗,并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開一壺水所用時間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點圖(如下圖).表中,.(1)根據(jù)散點圖判斷,與哪一個更適宜作燒水時間關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型?(不必說明理由)(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;(3)若單位時間內(nèi)煤氣輸出量與旋轉(zhuǎn)的弧度數(shù)成正比,那么,利用第(2)問求得的回歸方程知為多少時,燒開一壺水最省煤氣?附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計值分別為,21.(12分)(江蘇省徐州市高三第一次質(zhì)量檢測數(shù)學(xué)試題)在平面直角坐標(biāo)系中,已知平行于軸的動直線交拋物線:于點,點為的焦點.圓心不在軸上的圓與直線,,軸都相切,設(shè)的軌跡為曲線.(1)求曲線的方程;(2)若直線與曲線相切于點,過且垂直于的直線為,直線,分別與軸相交于點,.當(dāng)線段的長度最小時,求的值.22.(10分)在三角形中,角,,的對邊分別為,,,若.(Ⅰ)求角;(Ⅱ)若,,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】考點:程序框圖.分析:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)求S的值,我們用表格列出程序運行過程中各變量的值的變化情況,不難給出答案.解:程序在運行過程中各變量的值如下表示:Si是否繼續(xù)循環(huán)循環(huán)前11/第一圈32是第二圈73是第三圈154是第四圈315否故最后當(dāng)i<5時退出,故選B.2、C【解析】
由題意知:,,設(shè),則,在中,列勾股方程可解得,然后由得出答案.【詳解】解:由題意知:,,設(shè),則在中,列勾股方程得:,解得所以從該葭上隨機取一點,則該點取自水下的概率為故選C.【點睛】本題考查了幾何概型中的長度型,屬于基礎(chǔ)題.3、A【解析】
由函數(shù)性質(zhì),結(jié)合特殊值驗證,通過排除法求得結(jié)果.【詳解】對于選項B,為奇函數(shù)可判斷B錯誤;對于選項C,當(dāng)時,,可判斷C錯誤;對于選項D,,可知函數(shù)在第一象限的圖象無增區(qū)間,故D錯誤;故選:A.【點睛】本題考查已知函數(shù)的圖象判斷解析式問題,通過函數(shù)性質(zhì)及特殊值利用排除法是解決本題的關(guān)鍵,難度一般.4、D【解析】從第一行的第5列和第6列起由左向右讀數(shù)劃去大于20的數(shù)分別為:08,02,14,07,01,所以第5個個體是01,選D.考點:此題主要考查抽樣方法的概念、抽樣方法中隨機數(shù)表法,考查學(xué)習(xí)能力和運用能力.5、A【解析】
考慮既屬于又屬于的集合,即得.【詳解】.故選:【點睛】本題考查集合的交運算,屬于基礎(chǔ)題.6、A【解析】
先求出,再與集合N求交集.【詳解】由已知,,又,所以.故選:A.【點睛】本題考查集合的基本運算,涉及到補集、交集運算,是一道容易題.7、B【解析】
函數(shù)的圖象恒在軸的上方,在上恒成立.即,即函數(shù)的圖象在直線上方,先求出兩者相切時的值,然后根據(jù)變化時,函數(shù)的變化趨勢,從而得的范圍.【詳解】由題在上恒成立.即,的圖象永遠在的上方,設(shè)與的切點,則,解得,易知越小,圖象越靠上,所以.故選:B.【點睛】本題考查函數(shù)圖象與不等式恒成立的關(guān)系,考查轉(zhuǎn)化與化歸思想,首先函數(shù)圖象轉(zhuǎn)化為不等式恒成立,然后不等式恒成立再轉(zhuǎn)化為函數(shù)圖象,最后由極限位置直線與函數(shù)圖象相切得出參數(shù)的值,然后得出參數(shù)范圍.8、A【解析】
設(shè),利用導(dǎo)數(shù)和題設(shè)條件,得到,得出函數(shù)在R上單調(diào)遞增,得到,進而變形即可求解.【詳解】由題意,設(shè),則,又由,所以,即函數(shù)在R上單調(diào)遞增,則,即,變形可得.故選:A.【點睛】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及其應(yīng)用,以及利用單調(diào)性比較大小,其中解答中根據(jù)題意合理構(gòu)造新函數(shù),利用新函數(shù)的單調(diào)性求解是解答的關(guān)鍵,著重考查了構(gòu)造思想,以及推理與計算能力,屬于中檔試題.9、C【解析】
根據(jù)線面的位置關(guān)系,結(jié)合線面平行的判定定理、平行線的性質(zhì)進行判斷即可.【詳解】A:當(dāng)時,也可以滿足∥,b∥,故本命題不正確;B:當(dāng)時,也可以滿足,,故本命題不正確;C:根據(jù)平行線的性質(zhì)可知:當(dāng)∥,,時,能得到,故本命題是正確的;D:當(dāng)時,也可以滿足,b∥,故本命題不正確.故選:C【點睛】本題考查了線面的位置關(guān)系,考查了平行線的性質(zhì),考查了推理論證能力.10、A【解析】
由圓心到漸近線的距離等于半徑列方程求解即可.【詳解】雙曲線的漸近線方程為y=±22x,圓心坐標(biāo)為(3,0).由題意知,圓心到漸近線的距離等于圓的半徑r,即r=±答案:A【點睛】本題考查了雙曲線的漸近線方程及直線與圓的位置關(guān)系,屬于基礎(chǔ)題.11、D【解析】
分別解出集合然后求并集.【詳解】解:,故選:D【點睛】考查集合的并集運算,基礎(chǔ)題.12、C【解析】
根據(jù)在關(guān)于對稱的區(qū)間上概率相等的性質(zhì)求解.【詳解】,,,.故選:C.【點睛】本題考查正態(tài)分布的應(yīng)用.掌握正態(tài)曲線的性質(zhì)是解題基礎(chǔ).隨機變量服從正態(tài)分布,則.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由弦的長度最大可知為球的直徑.由向量的線性運用表示出,即可由范圍求得的取值范圍.【詳解】連接,如下圖所示:設(shè)球心為,則當(dāng)弦的長度最大時,為球的直徑,由向量線性運算可知正方體的棱長為2,則球的半徑為1,,所以,而所以,即故答案為:.【點睛】本題考查了空間向量線性運算與數(shù)量積的運算,正方體內(nèi)切球性質(zhì)應(yīng)用,屬于中檔題.14、【解析】
作出圖像,設(shè)點,根據(jù)已知可得,,且,可解出,計算即得.【詳解】如圖,設(shè),圓心坐標(biāo)為,可得,,,,,解得,,即的長是.故答案為:【點睛】本題考查直線與圓的位置關(guān)系,以及求平面兩點間的距離,運用了數(shù)形結(jié)合的思想.15、【解析】
根據(jù)正弦定理得,根據(jù)余弦定理得2PF1?PF2cos∠F1PF23,聯(lián)立方程得到,計算得到答案.【詳解】∵△PF1F2中,sin∠PF1F2═,sin∠PF1F2═,∴由正弦定理得,①又∵,tan∠PF2F1=﹣2,∴tan∠F1PF2=﹣tan(∠PF2F1+∠PF1F2),可得cos∠F1PF2,△PF1F2中用余弦定理,得2PF1?PF2cos∠F1PF23,②①②聯(lián)解,得,可得,∴雙曲線的,結(jié)合,得離心率.故答案為:.【點睛】本題考查了雙曲線離心率,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.16、【解析】
設(shè),代入已知條件進行化簡,根據(jù)復(fù)數(shù)相等的條件,求得的值.【詳解】設(shè),由,得,所以,所以.故答案為:【點睛】本小題主要考查共軛復(fù)數(shù),考查復(fù)數(shù)相等的條件,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)極小值;(3)函數(shù)的零點個數(shù)為.【解析】
(1)求出和的值,利用點斜式可得出所求切線的方程;(2)利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,進而可得出該函數(shù)的極小值;(3)由當(dāng)時,以及,結(jié)合函數(shù)在區(qū)間上的單調(diào)性可得出函數(shù)的零點個數(shù).【詳解】(1)因為,所以.所以,.所以曲線在點處的切線為;(2)因為,令,得或.列表如下:0極大值極小值所以,函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為,所以,當(dāng)時,函數(shù)有極小值;(3)當(dāng)時,,且.由(2)可知,函數(shù)在上單調(diào)遞增,所以函數(shù)的零點個數(shù)為.【點睛】本題考查利用導(dǎo)數(shù)求函數(shù)的切線方程、極值以及利用導(dǎo)數(shù)研究函數(shù)的零點問題,考查分析問題和解決問題的能力,屬于中等題.18、(1)(2)證明見解析(3)證明見解析【解析】
(1)由是遞增數(shù)列,得,由此能求出的前項和.(2)推導(dǎo)出,,由此能證明的“極差數(shù)列”仍是.(3)證當(dāng)數(shù)列是等差數(shù)列時,設(shè)其公差為,,是一個單調(diào)遞增數(shù)列,從而,,由,,,分類討論,能證明若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.【詳解】(1)解:∵無窮數(shù)列的前項中最大值為,最小值為,,,是遞增數(shù)列,∴,∴的前項和.(2)證明:∵,,∴,∴,∵,∴,∴的“極差數(shù)列”仍是(3)證明:當(dāng)數(shù)列是等差數(shù)列時,設(shè)其公差為,,根據(jù),的定義,得:,,且兩個不等式中至少有一個取等號,當(dāng)時,必有,∴,∴是一個單調(diào)遞增數(shù)列,∴,,∴,∴,∴是等差數(shù)列,當(dāng)時,則必有,∴,∴是一個單調(diào)遞減數(shù)列,∴,,∴,∴.∴是等差數(shù)列,當(dāng)時,,∵,中必有一個為0,根據(jù)上式,一個為0,為一個必為0,∴,,∴數(shù)列是常數(shù)數(shù)列,則數(shù)列是等差數(shù)列.綜上,若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.【點睛】本小題主要考查新定義數(shù)列的理解和運用,考查等差數(shù)列的證明,考查數(shù)列的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.19、(1)①當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增;②當(dāng)時,在上單調(diào)遞增;(2).【解析】
(1)求出函數(shù)的定義域和導(dǎo)函數(shù),,對討論,得導(dǎo)函數(shù)的正負,得原函數(shù)的單調(diào)性;(2)法一:由得,分別運用導(dǎo)函數(shù)得出函數(shù)(),的單調(diào)性,和其函數(shù)的最值,可得,可得的范圍;法二:由得,化為令(),研究函數(shù)的單調(diào)性,可得的取值范圍.【詳解】(1)的定義域為,,①當(dāng)時,由得,得,在上單調(diào)遞減,在上單調(diào)遞增;②當(dāng)時,恒成立,在上單調(diào)遞增;(2)法一:由得,令(),則,在上單調(diào)遞減,,,即,令,則,在上單調(diào)遞增,,在上單調(diào)遞減,所以,即,(*)當(dāng)時,,(*)式恒成立,即恒成立,滿足題意法二:由得,,令(),則,在上單調(diào)遞減,,,即,當(dāng)時,由(Ⅰ)知在上單調(diào)遞增,恒成立,滿足題意當(dāng)時,令,則,所以在上單調(diào)遞減,又,當(dāng)時,,,使得,當(dāng)時,,即,又,,,不滿足題意,綜上所述,的取值范圍是【點睛】本題考查對于含參數(shù)的函數(shù)的單調(diào)性的討論,不等式恒成立時,求解參數(shù)的范圍,屬于難度題.20、(1)選取更合適;(2);(3)時,煤氣用量最小.【解析】
(1)根據(jù)散點圖的特點,可得更適合;(2)先建立關(guān)于的回歸方程,再得出關(guān)于的回歸方程;(3)寫出函數(shù)關(guān)系,利用基本不等式得出最小值及其成立的條件.【詳解】(1)選取更適宜作燒水時間關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 部門個人工作計劃
- 2024年汽車電子設(shè)備銷售及維修合同3篇
- 2024年版魚塘租賃經(jīng)營協(xié)議模板
- 2024年版離婚雙方權(quán)益保障合同模板版B版
- 小學(xué)教學(xué)計劃二年級
- 居住建筑及公共建筑建設(shè)項目節(jié)能評估報告書
- 2025年中國大黃提取物行業(yè)市場調(diào)研及未來發(fā)展趨勢預(yù)測報告
- 銷售客服工作計劃
- 2022初二語文教學(xué)工作計劃
- 行政文員個人工作報告
- Module3 Unit2 Do they like apples?(教學(xué)設(shè)計)-2024-2025學(xué)年外研版(一起)英語二年級上冊
- 醫(yī)院教學(xué)工作匯報
- 籃球球星姚明課件
- 小學(xué)生經(jīng)典閱讀英語短文100篇
- 2024-2030年中國計算機視覺行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
- 2025高考語文步步高大一輪復(fù)習(xí)講義教材文言文點線面答案精析
- 新省中考統(tǒng)考語文模擬卷(一)(山東卷)2024年新中考地區(qū)語文適應(yīng)性考試模擬卷(新中考地區(qū)適用)(原卷版)
- AltiumDesigner電路與PCB設(shè)計智慧樹知到期末考試答案章節(jié)答案2024年四川郵電職業(yè)技術(shù)學(xué)院
- DL∕T 5344-2018 電力光纖通信工程驗收規(guī)范
- DL∕T 2528-2022 電力儲能基本術(shù)語
- 大學(xué)英語聽說一智慧樹知到期末考試答案章節(jié)答案2024年西北政法大學(xué)
評論
0/150
提交評論