版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣西百色市田東中學(xué)2025屆高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖所示,已知某幾何體的三視圖及其尺寸(單位:),則該幾何體的表面積為()A. B.C. D.2.的展開式中,滿足的的系數(shù)之和為()A. B. C. D.3.大衍數(shù)列,米源于我國古代文獻《乾坤譜》中對易傳“大衍之?dāng)?shù)五十”的推論,主要用于解釋我國傳統(tǒng)文化中的太極衍生原理,數(shù)列中的每一項,都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和.已知該數(shù)列前10項是0,2,4,8,12,18,24,32,40,50,…,則大衍數(shù)列中奇數(shù)項的通項公式為()A. B. C. D.4.《九章算術(shù)》中記載,塹堵是底面為直角三角形的直三棱柱,陽馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐.如圖,在塹堵中,,,當(dāng)陽馬體積的最大值為時,塹堵的外接球的體積為()A. B. C. D.5.已知函數(shù)(,且)在區(qū)間上的值域為,則()A. B. C.或 D.或46.正項等差數(shù)列的前和為,已知,則=()A.35 B.36 C.45 D.547.把函數(shù)圖象上各點的橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變,再將圖象向右平移個單位,那么所得圖象的一個對稱中心為()A. B. C. D.8.在邊長為的菱形中,,沿對角線折成二面角為的四面體(如圖),則此四面體的外接球表面積為()A. B.C. D.9.函數(shù)在上單調(diào)遞減的充要條件是()A. B. C. D.10.已知函數(shù),,若,對任意恒有,在區(qū)間上有且只有一個使,則的最大值為()A. B. C. D.11.斜率為1的直線l與橢圓相交于A、B兩點,則的最大值為A.2 B. C. D.12.已知函數(shù),集合,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,分別是橢圓:()的左、右焦點,過左焦點的直線與橢圓交于、兩點,且,,則橢圓的離心率為__________.14.三對父子去參加親子活動,坐在如圖所示的6個位置上,有且僅有一對父子是相鄰而坐的坐法有________種(比如:B與D、B與C是相鄰的,A與D、C與D是不相鄰的).15.已知實數(shù)、滿足,且可行域表示的區(qū)域為三角形,則實數(shù)的取值范圍為______,若目標(biāo)函數(shù)的最小值為-1,則實數(shù)等于______.16.曲線在點(1,1)處的切線與軸及直線=所圍成的三角形面積為,則實數(shù)=____。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,且PA=AD,E,F(xiàn)分別是棱AB,PC的中點.求證:(1)EF//平面PAD;(2)平面PCE⊥平面PCD.18.(12分)如圖,已知橢圓C:x24+y2=1,F(xiàn)為其右焦點,直線l:y=kx+m(km<0)與橢圓交于P(x1(I)試用x1表示|PF|(II)證明:原點O到直線l的距離為定值.19.(12分)已知拋物線的準(zhǔn)線過橢圓C:(a>b>0)的左焦點F,且點F到直線l:(c為橢圓焦距的一半)的距離為4.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過點F做直線與橢圓C交于A,B兩點,P是AB的中點,線段AB的中垂線交直線l于點Q.若,求直線AB的方程.20.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)寫出的普通方程和的直角坐標(biāo)方程;(2)設(shè)點在上,點在上,求的最小值以及此時的直角坐標(biāo).21.(12分)2019年是五四運動100周年.五四運動以來的100年,是中國青年一代又一代接續(xù)奮斗、凱歌前行的100年,是中口青年用青春之我創(chuàng)造青春之中國、青春之民族的100年.為繼承和發(fā)揚五四精神在青年節(jié)到來之際,學(xué)校組織“五四運動100周年”知識競賽,競賽的一個環(huán)節(jié)由10道題目組成,其中6道A類題、4道B類題,參賽者需從10道題目中隨機抽取3道作答,現(xiàn)有甲同學(xué)參加該環(huán)節(jié)的比賽.(1)求甲同學(xué)至少抽到2道B類題的概率;(2)若甲同學(xué)答對每道A類題的概率都是,答對每道B類題的概率都是,且各題答對與否相互獨立.現(xiàn)已知甲同學(xué)恰好抽中2道A類題和1道B類題,用X表示甲同學(xué)答對題目的個數(shù),求隨機變量X的分布列和數(shù)學(xué)期望.22.(10分)已知數(shù)列滿足.(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列的前項和為,證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,據(jù)此可計算出答案.【詳解】由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,該幾何體的表面積.故選:C【點睛】本題主要考查了三視圖的知識,幾何體的表面積的計算.由三視圖正確恢復(fù)幾何體是解題的關(guān)鍵.2、B【解析】
,有,,三種情形,用中的系數(shù)乘以中的系數(shù),然后相加可得.【詳解】當(dāng)時,的展開式中的系數(shù)為.當(dāng),時,系數(shù)為;當(dāng),時,系數(shù)為;當(dāng),時,系數(shù)為;故滿足的的系數(shù)之和為.故選:B.【點睛】本題考查二項式定理,掌握二項式定理和多項式乘法是解題關(guān)鍵.3、B【解析】
直接代入檢驗,排除其中三個即可.【詳解】由題意,排除D,,排除A,C.同時B也滿足,,,故選:B.【點睛】本題考查由數(shù)列的項選擇通項公式,解題時可代入檢驗,利用排除法求解.4、B【解析】
利用均值不等式可得,即可求得,進而求得外接球的半徑,即可求解.【詳解】由題意易得平面,所以,當(dāng)且僅當(dāng)時等號成立,又陽馬體積的最大值為,所以,所以塹堵的外接球的半徑,所以外接球的體積,故選:B【點睛】本題以中國傳統(tǒng)文化為背景,考查四棱錐的體積、直三棱柱的外接球的體積、基本不等式的應(yīng)用,體現(xiàn)了數(shù)學(xué)運算、直觀想象等核心素養(yǎng).5、C【解析】
對a進行分類討論,結(jié)合指數(shù)函數(shù)的單調(diào)性及值域求解.【詳解】分析知,.討論:當(dāng)時,,所以,,所以;當(dāng)時,,所以,,所以.綜上,或,故選C.【點睛】本題主要考查指數(shù)函數(shù)的值域問題,指數(shù)函數(shù)的值域一般是利用單調(diào)性求解,側(cè)重考查數(shù)學(xué)運算和數(shù)學(xué)抽象的核心素養(yǎng).6、C【解析】
由等差數(shù)列通項公式得,求出,再利用等差數(shù)列前項和公式能求出.【詳解】正項等差數(shù)列的前項和,,,解得或(舍),,故選C.【點睛】本題主要考查等差數(shù)列的性質(zhì)與求和公式,屬于中檔題.解等差數(shù)列問題要注意應(yīng)用等差數(shù)列的性質(zhì)()與前項和的關(guān)系.7、D【解析】
試題分析:把函數(shù)圖象上各點的橫坐標(biāo)伸長為原來的倍(縱坐標(biāo)不變),可得的圖象;再將圖象向右平移個單位,可得的圖象,那么所得圖象的一個對稱中心為,故選D.考點:三角函數(shù)的圖象與性質(zhì).8、A【解析】
畫圖取的中點M,法一:四邊形的外接圓直徑為OM,即可求半徑從而求外接球表面積;法二:根據(jù),即可求半徑從而求外接球表面積;法三:作出的外接圓直徑,求出和,即可求半徑從而求外接球表面積;【詳解】如圖,取的中點M,和的外接圓半徑為,和的外心,到弦的距離(弦心距)為.法一:四邊形的外接圓直徑,,;法二:,,;法三:作出的外接圓直徑,則,,,,,,,,,.故選:A【點睛】此題考查三棱錐的外接球表面積,關(guān)鍵點是通過幾何關(guān)系求得球心位置和球半徑,方法較多,屬于較易題目.9、C【解析】
先求導(dǎo)函數(shù),函數(shù)在上單調(diào)遞減則恒成立,對導(dǎo)函數(shù)不等式換元成二次函數(shù),結(jié)合二次函數(shù)的性質(zhì)和圖象,列不等式組求解可得.【詳解】依題意,,令,則,故在上恒成立;結(jié)合圖象可知,,解得故.故選:C.【點睛】本題考查求三角函數(shù)單調(diào)區(qū)間.求三角函數(shù)單調(diào)區(qū)間的兩種方法:(1)代換法:就是將比較復(fù)雜的三角函數(shù)含自變量的代數(shù)式整體當(dāng)作一個角(或),利用基本三角函數(shù)的單調(diào)性列不等式求解;(2)圖象法:畫出三角函數(shù)的正、余弦曲線,結(jié)合圖象求它的單調(diào)區(qū)間.10、C【解析】
根據(jù)的零點和最值點列方程組,求得的表達式(用表示),根據(jù)在上有且只有一個最大值,求得的取值范圍,求得對應(yīng)的取值范圍,由為整數(shù)對的取值進行驗證,由此求得的最大值.【詳解】由題意知,則其中,.又在上有且只有一個最大值,所以,得,即,所以,又,因此.①當(dāng)時,,此時取可使成立,當(dāng)時,,所以當(dāng)或時,都成立,舍去;②當(dāng)時,,此時取可使成立,當(dāng)時,,所以當(dāng)或時,都成立,舍去;③當(dāng)時,,此時取可使成立,當(dāng)時,,所以當(dāng)時,成立;綜上所得的最大值為.故選:C【點睛】本小題主要考查三角函數(shù)的零點和最值,考查三角函數(shù)的性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查分類討論的數(shù)學(xué)思想方法,屬于中檔題.11、C【解析】
設(shè)出直線的方程,代入橢圓方程中消去y,根據(jù)判別式大于0求得t的范圍,進而利用弦長公式求得|AB|的表達式,利用t的范圍求得|AB|的最大值.【詳解】解:設(shè)直線l的方程為y=x+t,代入y2=1,消去y得x2+2tx+t2﹣1=0,由題意得△=(2t)2﹣1(t2﹣1)>0,即t2<1.弦長|AB|=4.故選:C.【點睛】本題主要考查了橢圓的應(yīng)用,直線與橢圓的關(guān)系.常需要把直線與橢圓方程聯(lián)立,利用韋達定理,判別式找到解決問題的突破口.12、C【解析】
分別求解不等式得到集合,再利用集合的交集定義求解即可.【詳解】,,∴.故選C.【點睛】本題主要考查了集合的基本運算,難度容易.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設(shè),則,,由知,,,作,垂足為C,則C為的中點,在和中分別求出,進而求出的關(guān)系式,即可求出橢圓的離心率.【詳解】如圖,設(shè),則,,由橢圓定義知,,因為,所以,,作,垂足為C,則C為的中點,在中,因為,所以,在中,由余弦定理可得,,即,解得,所以橢圓的離心率為.故答案為:【點睛】本題考查橢圓的離心率和直線與橢圓的位置關(guān)系;利用橢圓的定義,結(jié)合焦點三角形和余弦定理是求解本題的關(guān)鍵;屬于中檔題、??碱}型.14、192【解析】
根據(jù)題意,分步進行分析:①,在三對父子中任選1對,安排在相鄰的位置上,②,將剩下的4人安排在剩下的4個位置,要求父子不能坐在相鄰的位置,由分步計數(shù)原理計算可得答案.【詳解】根據(jù)題意,分步進行分析:①,在三對父子中任選1對,有3種選法,由圖可得相鄰的位置有4種情況,將選出的1對父子安排在相鄰的位置,有種安排方法;②,將剩下的4人安排在剩下的4個位置,要求父子不能坐在相鄰的位置,有種安排方法,則有且僅有一對父子是相鄰而坐的坐法種;故答案為:【點睛】本題考查排列、組合的應(yīng)用,涉及分步計數(shù)原理的應(yīng)用,屬于基礎(chǔ)題.15、【解析】
作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,結(jié)合目標(biāo)函數(shù)的最小值,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】作出可行域如圖,則要為三角形需滿足在直線下方,即,;目標(biāo)函數(shù)可視為,則為斜率為1的直線縱截距的相反數(shù),該直線截距最大在過點時,此時,直線:,與:的交點為,該點也在直線:上,故,故答案為:;.【點睛】本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法,屬于基礎(chǔ)題.16、或1【解析】
利用導(dǎo)數(shù)的幾何意義,可得切線的斜率,以及切線方程,求得切線與軸和的交點,由三角形的面積公式可得所求值.【詳解】的導(dǎo)數(shù)為,可得切線的斜率為3,切線方程為,可得,可得切線與軸的交點為,,切線與的交點為,可得,解得或。【點睛】本題主要考查利用導(dǎo)數(shù)求切線方程,以及直線方程的運用,三角形的面積求法。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析【解析】
(1)取的中點構(gòu)造平行四邊形,得到,從而證出平面;(2)先證平面,再利用面面垂直的判定定理得到平面平面.【詳解】證明:(1)如圖,取的中點,連接,,是棱的中點,底面是矩形,,且,又,分別是棱,的中點,,且,,且,四邊形為平行四邊形,,又平面,平面,平面;(2),點是棱的中點,,又,,平面,平面,,底面是矩形,,平面,平面,且,平面,又平面,,,,又平面,平面,且,平面,又平面,平面平面.【點睛】本題主要考查線面平行的判定,面面垂直的判定,首選判定定理,是中檔題.18、(I)|FP|=2-32x【解析】
(I)直接利用兩點間距離公式化簡得到答案.(II)設(shè)Ax3,y3,Bx4【詳解】(I)橢圓C:x24|FP|=x(II)設(shè)Ax3,y3,B4k2+1x2OA=OB,故y3PA=PF,故1+k由已知得:x3<x故1+k即1+k2?故原點O到直線l的距離為d=m【點睛】本題考查了橢圓內(nèi)的線段長度,定值問題,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.19、(1);(2)或.【解析】
(1)由拋物線的準(zhǔn)線方程求出的值,確定左焦點坐標(biāo),再由點F到直線l:的距離為4,求出即可;(2)設(shè)直線方程,與橢圓方程聯(lián)立,運用根與系數(shù)關(guān)系和弦長公式,以及兩直線垂直的條件和中點坐標(biāo)公式,即可得到所求直線的方程.【詳解】(1)拋物線的準(zhǔn)線方程為,,直線,點F到直線l的距離為,,所以橢圓的標(biāo)準(zhǔn)方程為;(2)依題意斜率不為0,又過點,設(shè)方程為,聯(lián)立,消去得,,,設(shè),,,,線段AB的中垂線交直線l于點Q,所以橫坐標(biāo)為3,,,,平方整理得,解得或(舍去),,所求的直線方程為或.【點睛】本題考查橢圓的方程以及直線與橢圓的位置關(guān)系,要熟練應(yīng)用根與系數(shù)關(guān)系、相交弦長公式,合理運用兩點間的距離公式,考查計算求解能力,屬于中檔題.20、(1):,:;(2),此時.【解析】試題分析:(1)的普通方程為,的直角坐標(biāo)方程為;(2)由題意,可設(shè)點的直角坐標(biāo)為到的距離當(dāng)且僅當(dāng)時,取得最小值,最小值為,此時的直角坐標(biāo)為.試題解析:(1)的普通
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025合同法學(xué)教學(xué)大綱
- 2025有限公司員工試用期合同
- 2025商業(yè)地產(chǎn)銷售代理合同
- 二零二五年度地質(zhì)災(zāi)害應(yīng)急土方運輸服務(wù)合同3篇
- 2025年度養(yǎng)殖場養(yǎng)殖廢棄物資源化利用合同3篇
- 2025年度科技創(chuàng)新園區(qū)拆遷房產(chǎn)分割與產(chǎn)業(yè)扶持協(xié)議3篇
- 2025年度林業(yè)產(chǎn)業(yè)發(fā)展競業(yè)禁止模板木方交易協(xié)議3篇
- 二零二五年度農(nóng)村集體建設(shè)用地個人地基買賣合同2篇
- 二零二五年度高速公路建設(shè)項目承包協(xié)議3篇
- 2025年度水上旅游安全事故處理與救援服務(wù)協(xié)議3篇
- 春節(jié)期間健康飲食知識講座
- 新概念英語第一冊Lesson-67-68練習(xí)題
- 2024年杭州市能源集團招聘筆試參考題庫含答案解析
- 數(shù)字孿生應(yīng)用技術(shù)基礎(chǔ)知識考試題庫(600題)
- 企業(yè)融資盡調(diào)報告
- 保育員(高級)考試題庫附答案(600題)
- 中國鋁業(yè)股份有限公司河南分公司鞏義市山川鋁土礦礦山地質(zhì)環(huán)境保護與土地復(fù)墾方案
- 工商企業(yè)管理畢業(yè)論文范文六篇
- 二十五項反措檢查表優(yōu)質(zhì)資料
- 保密辦主任工作總結(jié)保密辦主任工作總結(jié)八篇
- 機械原理課程設(shè)計-壓床機構(gòu)的設(shè)計
評論
0/150
提交評論