版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
專題08幾何中的面積問題面積問題是壓軸題中??嫉膯栴},不僅在幾何壓軸題中,在函數(shù)壓軸題中考查的頻率也很高。幾何壓軸題中的面積問題往往比較抽象,并不是簡單幾何圖形的面積,通常情況下,我們需要對所求的幾何圖形面積進(jìn)行轉(zhuǎn)化為我們熟悉的可求的類型。在幾何壓軸題中的面積考查主要表現(xiàn)為兩個方面:一是求某個幾何圖形的面;二是求變化中的幾何圖形面積的最值。一、求某個幾何圖形面積的類型,常用的方法:1.添加輔助線:通常包括做出三角形的高,割補(bǔ)法構(gòu)造三角形等。2.圖形變換的方式對所求圖形進(jìn)行轉(zhuǎn)化,例如通過平移、旋轉(zhuǎn)等變化,把復(fù)雜圖形轉(zhuǎn)化為三角形等。3.可以利用三角形全等,對圖形進(jìn)行轉(zhuǎn)化。4.利用相似三角形的面積之比等于相似比,構(gòu)建方程進(jìn)行求解。二、求變化中的幾何圖形的面積問題:(1)方程與函數(shù)的方法:通常需要設(shè)出未知數(shù)x,并用x表示出求面積所必需的邊長和高,構(gòu)建方程求出未知數(shù),或構(gòu)建函數(shù),利用函數(shù)的性質(zhì)求得面積的最值。(2)幾何的方法:一般情況下,在求變化中幾何圖形的面積的最值時,需要我們找準(zhǔn)變化的量,討論變化的量的臨界值,例如:在求變化三角形的面積最值時,如果底邊長一定,而底邊上的高在不斷的變化,我們就要根據(jù)高線變化的規(guī)律,尋找高的最大值或者最小值的情況,從而求得面積的最小值。 (2022·浙江衢州·統(tǒng)考中考真題)如圖,在菱形ABCD中,AB=5,BD為對角線.點(diǎn)E是邊AB延長線上的任意一點(diǎn),連結(jié)SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,SKIPIF1<0平分SKIPIF1<0交SKIPIF1<0于點(diǎn)G.(1)求證:SKIPIF1<0.(2)若SKIPIF1<0.①求菱形SKIPIF1<0的面積.②求SKIPIF1<0的值.(3)若SKIPIF1<0,當(dāng)SKIPIF1<0的大小發(fā)生變化時(SKIPIF1<0),在SKIPIF1<0上找一點(diǎn)SKIPIF1<0,使SKIPIF1<0為定值,說明理由并求出SKIPIF1<0的值.(1)由菱形的性質(zhì)可證得∠CBD=∠ABD=SKIPIF1<0∠ABC,由SKIPIF1<0平分SKIPIF1<0交SKIPIF1<0于點(diǎn)G,得到∠CBG=∠EBG=SKIPIF1<0∠CBE,進(jìn)一步即可得到答案;(2)①連接AC交BD于點(diǎn)O,Rt△DOC中,OC=SKIPIF1<0,求得AC=8,由菱形的面積公式可得答案;②由BGSKIPIF1<0AC,得到SKIPIF1<0,DH=HG,DG=2DH,又由DG=2GE,得到EG=DH=HG,則SKIPIF1<0,再證明△CDH∽△AEH,CH=SKIPIF1<0AC=SKIPIF1<0,OH=OC-CH=4-SKIPIF1<0=SKIPIF1<0,利用正切的定義得到答案;(3)過點(diǎn)G作GTSKIPIF1<0BC,交AE于點(diǎn)T,△BGE∽△AHE,得AB=BE=5,則EG=GH,再證△DOH∽△DBG,得DH=GH=EG,由△EGT∽△EDA得SKIPIF1<0,GT=SKIPIF1<0,為定值,即可得到ET的值.【答案】(1)見解析(2)①24,②SKIPIF1<0(3)SKIPIF1<0=SKIPIF1<0,理由見解析【詳解】(1)證明:∵四邊形ABCD是菱形,∴BC=DC,ABSKIPIF1<0CD,∴∠BDC=∠CBD,∠BDC=∠ABD,∴∠CBD=∠ABD=SKIPIF1<0∠ABC,∵SKIPIF1<0平分SKIPIF1<0交SKIPIF1<0于點(diǎn)G,∴∠CBG=∠EBG=SKIPIF1<0∠CBE,∴∠CBD+∠CBG=SKIPIF1<0(∠ABC+∠CBE)=SKIPIF1<0×180°=90°,∴∠DBG=90°;(2)解:①如圖1,連接AC交BD于點(diǎn)O,∵四邊形ABCD是菱形,BD=6,∴OD=SKIPIF1<0BD=3,AC⊥BD,∴∠DOC=90°,在Rt△DOC中,OC=SKIPIF1<0,∴AC=2OC=8,∴SKIPIF1<0,即菱形SKIPIF1<0的面積是24.②如圖2,連接AC,分別交BD、DE于點(diǎn)O、H,∵四邊形ABCD是菱形,∴AC⊥BD,∵∠DBG=90°∴BG⊥BD,∴BGSKIPIF1<0AC,∴SKIPIF1<0,∴DH=HG,DG=2DH,∵DG=2GE,∴EG=DH=HG,∴SKIPIF1<0,∵ABSKIPIF1<0CD,∴∠DCH=EAH,∠CDH=∠AEH,∴△CDH∽△AEH,∴SKIPIF1<0,∴CH=SKIPIF1<0AC=SKIPIF1<0,∴OH=OC-CH=4-SKIPIF1<0=SKIPIF1<0,∴tan∠BDE=SKIPIF1<0;(3)如圖3,過點(diǎn)G作GTSKIPIF1<0BC交AE于點(diǎn)T,此時ET=SKIPIF1<0.理由如下:由題(1)可知,當(dāng)∠DAB的大小發(fā)生變化時,始終有BGSKIPIF1<0AC,∴△BGE∽△AHE,∴SKIPIF1<0,∵AB=BE=5,∴EG=GH,同理可得,△DOH∽△DBG,∴SKIPIF1<0,∵BO=DO,∴DH=GH=EG,∵GTSKIPIF1<0BC,∴GTSKIPIF1<0AD,∴△EGT∽△EDA,∴SKIPIF1<0,∵AD=AB=5,∴GT=SKIPIF1<0,為定值,此時ET=SKIPIF1<0AE=SKIPIF1<0(AB+BE)=SKIPIF1<0.此題主要考查了相似三角形的判定和性質(zhì)、菱形的性質(zhì)、勾股定理、銳角三角函數(shù)等知識,熟練掌握相似三角形的判定和性質(zhì)是解題的關(guān)鍵.(2022·山東東營·統(tǒng)考中考真題)SKIPIF1<0和SKIPIF1<0均為等邊三角形,點(diǎn)E、D分別從點(diǎn)A,B同時出發(fā),以相同的速度沿SKIPIF1<0運(yùn)動,運(yùn)動到點(diǎn)B、C停止.(1)如圖1,當(dāng)點(diǎn)E、D分別與點(diǎn)A、B重合時,請判斷:線段SKIPIF1<0的數(shù)量關(guān)系是____________,位置關(guān)系是____________;(2)如圖2,當(dāng)點(diǎn)E、D不與點(diǎn)A,B重合時,(1)中的結(jié)論是否依然成立?若成立,請給予證明;若不成立,請說明理由;(3)當(dāng)點(diǎn)D運(yùn)動到什么位置時,四邊形SKIPIF1<0的面積是SKIPIF1<0面積的一半,請直接寫出答案;此時,四邊形SKIPIF1<0是哪種特殊四邊形?請?jiān)趥溆脠D中畫出圖形并給予證明.(1)根據(jù)SKIPIF1<0和SKIPIF1<0均為等邊三角形,得到AF=AD,AB=BC,∠FAD=∠ABC=60°,根據(jù)E、D分別與點(diǎn)A、B重合,得到AB=AD,EF=AF,CD=BC,∠FAD=∠FAB,推出CD=EF,CDSKIPIF1<0EF;(2)連接BF,根據(jù)∠FAD=∠BAC=60°,推出∠FAB=∠DAC,根據(jù)AF=AD,AB=AC,推出△AFB≌△ADC,得到∠ABF=∠ACD=60°,BF=CD,根據(jù)AE=BD,推出BE=CD,得到BF=BE,推出△BFE是等邊三角形,得到BF=EF,∠FEB=60°,推出CD=EF,CD∥EF;(3)過點(diǎn)E作EG⊥BC于點(diǎn)G,設(shè)△ABC的邊長為a,AD=h,根據(jù)AB=BC,BD=CD=SKIPIF1<0BC=SKIPIF1<0a,BD=AE,推出AE=BE=SKIPIF1<0AB,根據(jù)AB=AC,推出AD⊥BC,得到EGSKIPIF1<0AD,推出△EBG∽△ABD,推出SKIPIF1<0,得到SKIPIF1<0=SKIPIF1<0h,根據(jù)CD=EF,CD∥EF,推出四邊形CEFD是平行四邊形,推出SKIPIF1<0,根據(jù)EF=BD,EFSKIPIF1<0BD,推出四邊形BDEF是平行四邊形,根據(jù)BF=EF,推出SKIPIF1<0是菱形.【答案】(1)CD=EF,CDSKIPIF1<0EF(2)CD=EF,CDSKIPIF1<0EF,成立,理由見解析(3)點(diǎn)D運(yùn)動到BC的中點(diǎn)時,SKIPIF1<0是菱形,證明見解析【詳解】(1)∵SKIPIF1<0和SKIPIF1<0均為等邊三角形,∴AF=AD,AB=BC,∠FAD=∠ABC=60°,當(dāng)點(diǎn)E、D分別與點(diǎn)A、B重合時,AB=AD,EF=AF,CD=BC,∠FAD=∠FAB,∴CD=EF,CDSKIPIF1<0EF;故答案為:CD=EF,CD∥EF;(2)CD=EF,CDSKIPIF1<0EF,成立.證明:連接BF,∵∠FAD=∠BAC=60°,∴∠FAD-∠BAD=∠BAC-∠BAD,即∠FAB=∠DAC,∵AF=AD,AB=AC,∴△AFB≌△ADC(SAS),∴∠ABF=∠ACD=60°,BF=CD,∵AE=BD,∴BE=CD,∴BF=BE,∴△BFE是等邊三角形,∴BF=EF,∠FEB=60°,∴CD=EF,BCSKIPIF1<0EF,即CDSKIPIF1<0EF,∴CD=EF,CDSKIPIF1<0EF;(3)如圖,當(dāng)點(diǎn)D運(yùn)動到BC的中點(diǎn)時,四邊形SKIPIF1<0的面積是SKIPIF1<0面積的一半,此時,四邊形SKIPIF1<0是菱形.證明:過點(diǎn)E作EG⊥BC于點(diǎn)G,設(shè)△ABC的邊長為a,AD=h,∵AB=BC,BD=CD=SKIPIF1<0BC=SKIPIF1<0a,BD=AE,∴AE=BE=SKIPIF1<0AB,∵AB=AC,∴AD⊥BC,∴EGSKIPIF1<0AD,∴△EBG∽△ABD,∴SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0h,由(2)知,CD=EF,CDSKIPIF1<0EF,∴四邊形CEFD是平行四邊形,∴SKIPIF1<0,此時,EF=BD,EFSKIPIF1<0BD,∴四邊形BDEF是平行四邊形,∵BF=EF,∴SKIPIF1<0是菱形.本題主要考查了等邊三角形判定與性質(zhì),全等三角形的判定與性質(zhì),平行四邊形的判定與性質(zhì),相似三角形的判定與性質(zhì),菱形的判定,解決問題的關(guān)鍵是熟練掌握等邊三角形的判定和性質(zhì),全等三角形的判定和性質(zhì),平行四邊形判定和性質(zhì),相似三角形的判定和性質(zhì),菱形的判定.(2022·四川綿陽·統(tǒng)考中考真題)如圖,平行四邊形ABCD中,DB=SKIPIF1<0,AB=4,AD=2,動點(diǎn)E,F(xiàn)同時從A點(diǎn)出發(fā),點(diǎn)E沿著A→D→B的路線勻速運(yùn)動,點(diǎn)F沿著A→B→D的路線勻速運(yùn)動,當(dāng)點(diǎn)E,F(xiàn)相遇時停止運(yùn)動.(1)如圖1,設(shè)點(diǎn)E的速度為1個單位每秒,點(diǎn)F的速度為4個單位每秒,當(dāng)運(yùn)動時間為SKIPIF1<0秒時,設(shè)CE與DF交于點(diǎn)P,求線段EP與CP長度的比值;(2)如圖2,設(shè)點(diǎn)E的速度為1個單位每秒,點(diǎn)F的速度為SKIPIF1<0個單位每秒,運(yùn)動時間為x秒,ΔAEF的面積為y,求y關(guān)于x的函數(shù)解析式,并指出當(dāng)x為何值時,y的值最大,最大值為多少?(3)如圖3,H在線段AB上且AH=SKIPIF1<0HB,M為DF的中點(diǎn),當(dāng)點(diǎn)E、F分別在線段AD、AB上運(yùn)動時,探究點(diǎn)E、F在什么位置能使EM=HM.并說明理由.(1)延長DF交CB的延長線于點(diǎn)G,先證得SKIPIF1<0,可得SKIPIF1<0,根據(jù)題意可得AF=SKIPIF1<0,AE=SKIPIF1<0,可得到CG=3,再證明△PDE∽△PGC,即可求解;(2)分三種情況討論:當(dāng)0≤x≤2時,E點(diǎn)在AD上,F(xiàn)點(diǎn)在AB上;當(dāng)SKIPIF1<0時,E點(diǎn)在BD上,F(xiàn)點(diǎn)在AB上;當(dāng)SKIPIF1<0時,點(diǎn)E、F均在BD上,即可求解;(3)當(dāng)EF∥BD時,能使EM=HM.理由:連接DH,根據(jù)直角三角形的性質(zhì),即可求解.【答案】(1)SKIPIF1<0;(2)y關(guān)于x的函數(shù)解析式為SKIPIF1<0;當(dāng)SKIPIF1<0時,y的最大值為SKIPIF1<0;(3)當(dāng)EF∥BD時,能使EM=HM.理由見解析【詳解】(1)解:如圖,延長DF交CB的延長線于點(diǎn)G,∵四邊形ABCD是平行四邊形,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵點(diǎn)E的速度為1個單位每秒,點(diǎn)F的速度為4個單位每秒,運(yùn)動時間為SKIPIF1<0秒,∴AF=SKIPIF1<0,AE=SKIPIF1<0,∵AB=4,AD=2,∴BF=SKIPIF1<0,ED=SKIPIF1<0,∴SKIPIF1<0,∴BG=1,∴CG=3,∵SKIPIF1<0,∴△PDE∽△PGC,∴SKIPIF1<0,∴SKIPIF1<0;(2)解:根據(jù)題意得:當(dāng)0≤x≤2時,E點(diǎn)在AD上,F(xiàn)點(diǎn)在AB上,此時AE=x,SKIPIF1<0,∵SKIPIF1<0,AB=4,AD=2,∴SKIPIF1<0,∴△ABD是直角三角形,∵SKIPIF1<0,∴∠ABD=30°,∴∠A=60°,如圖,過點(diǎn)E作SKIPIF1<0交于H,∴SKIPIF1<0,∴SKIPIF1<0;∴當(dāng)x>0時,y隨x的增大而增大,此時當(dāng)x=2時,y有最大值3;當(dāng)SKIPIF1<0時,E點(diǎn)在BD上,F(xiàn)點(diǎn)在AB上,如圖,過點(diǎn)E作SKIPIF1<0交于N,過點(diǎn)D作SKIPIF1<0交于M,則EN∥DM,根據(jù)題意得:DE=x-2,∴SKIPIF1<0,在Rt△ABD中,SKIPIF1<0,AM=1,∵EN∥DM,∴△BEN∽△BDM,∴SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,此時該函數(shù)圖象的對稱軸為直線SKIPIF1<0,∴當(dāng)SKIPIF1<0時,y隨x的增大而增大,此時當(dāng)SKIPIF1<0時,y有最大值SKIPIF1<0;當(dāng)SKIPIF1<0時,點(diǎn)E、F均在BD上,過點(diǎn)E作SKIPIF1<0交于Q,過點(diǎn)F作SKIPIF1<0交于P,過點(diǎn)D作DM⊥AB于點(diǎn)M,∴SKIPIF1<0,DA+DE=x,∵AB=4,AD=2,∴SKIPIF1<0,SKIPIF1<0,∵PF∥DM,∴△BFP∽△BDM,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴△BEQ∽△BDM,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,此時y隨x的增大而減小,此時當(dāng)SKIPIF1<0時,y有最大值SKIPIF1<0;綜上所述:y關(guān)于x的函數(shù)解析式為SKIPIF1<0當(dāng)SKIPIF1<0時,y最大值為SKIPIF1<0;(3)解:當(dāng)EF∥BD時,能使EM=HM.理由如下:連接DH,如圖,∵SKIPIF1<0,AB=4,∴.AH=1,由(2)得:此時SKIPIF1<0,∵M(jìn)是DF的中點(diǎn),∴HM=DM=MF,∵EF∥BD,BD⊥AD,∴EF⊥AD,∴EM=DM=FM,∴EM=HM.本題是四邊形的綜合題,熟練掌握平行四邊形的性質(zhì),平行線的性質(zhì),直角三角形的性質(zhì),分類討論,數(shù)形結(jié)合是解題的關(guān)鍵.1.(2022·廣東江門·??家荒#c(diǎn)SKIPIF1<0為正方形SKIPIF1<0的邊SKIPIF1<0上一動點(diǎn),直線SKIPIF1<0與SKIPIF1<0相交于點(diǎn)SKIPIF1<0,與SKIPIF1<0的延長線相交于點(diǎn)SKIPIF1<0.(1)如圖①,若正方形的邊長為2,設(shè)SKIPIF1<0,SKIPIF1<0的面積為SKIPIF1<0,求SKIPIF1<0與SKIPIF1<0的函數(shù)關(guān)系;(2)如圖②,求證:SKIPIF1<0是SKIPIF1<0的外接圓的切線;(3)如果把正方形SKIPIF1<0換成是矩形或菱形,(2)的結(jié)論是否是否仍然成立?【答案】(1)SKIPIF1<0(2)見解析(3)正方形SKIPIF1<0換成矩形SKIPIF1<0時,(2)結(jié)論不成立;當(dāng)正方形SKIPIF1<0換成菱形SKIPIF1<0時,(2)結(jié)論成立【分析】(1)延長SKIPIF1<0,過G作SKIPIF1<0交SKIPIF1<0延長線于R,利用三角形面積公式即可得出結(jié)果;(2)取SKIPIF1<0中點(diǎn)O,連接SKIPIF1<0,根據(jù)正方形的性質(zhì)及全等三角形的判定和性質(zhì)得出SKIPIF1<0,再由各角之間的等量代換得出SKIPIF1<0,即可證明;(3)當(dāng)正方形SKIPIF1<0換成矩形SKIPIF1<0時,根據(jù)題意得出SKIPIF1<0不是SKIPIF1<0的外接圓的切線;當(dāng)正方形SKIPIF1<0換成菱形SKIPIF1<0時,同(2)中的方法一致,證明即可【詳解】(1)解:如圖,延長SKIPIF1<0,過G作SKIPIF1<0交SKIPIF1<0延長線于R,由題意可知,正方形SKIPIF1<0邊長為2,∴SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0即SKIPIF1<0;(2)證明:如圖,取SKIPIF1<0中點(diǎn)O,連接SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0是SKIPIF1<0外接圓的直徑,O為圓心,在正方形SKIPIF1<0中,SKIPIF1<0是對角線,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,在圓O中,SKIPIF1<0,∴SKIPIF1<0,
∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0是SKIPIF1<0的外接圓的切線;(3)當(dāng)正方形SKIPIF1<0換成矩形SKIPIF1<0時,由(2)可知,SKIPIF1<0,但是SKIPIF1<0與SKIPIF1<0不全等,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0不是SKIPIF1<0的外接圓的切線;當(dāng)正方形SKIPIF1<0換成菱形SKIPIF1<0時,在菱形SKIPIF1<0中,SKIPIF1<0是對角線,∴SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,在圓O中,連接SKIPIF1<0并延長交圓O于H,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0是直徑,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0是SKIPIF1<0的外接圓的切線.2.(2022·山東青島·山東省青島第二十六中學(xué)??级#﹩栴}提出:已知任意三角形的兩邊及夾角,求三角形的面積.問題探究:為了解決上述問題,我們先由特殊到一般來進(jìn)行探究.探究一:如圖1,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的面積.在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0SKIPIF1<0.SKIPIF1<0.探究二:如圖2,SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的面積(用含SKIPIF1<0、SKIPIF1<0、SKIPIF1<0代數(shù)式表示),寫出探究過程.探究三:如圖3,SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的面積(用SKIPIF1<0、SKIPIF1<0、SKIPIF1<0表示)寫出探究過程.問題解決:已知任意三角形的兩邊及夾角,求三角形的面積方法是:___________(用文字?jǐn)⑹觯畣栴}應(yīng)用:如圖4,已知平行四邊形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,求平行四邊形SKIPIF1<0的面積(用SKIPIF1<0、SKIPIF1<0、SKIPIF1<0表示)寫出解題過程.問題拓廣:如圖5所示,利用你所探究的結(jié)論直接寫出任意四邊形的面積(用SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0表示),其中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.【答案】SKIPIF1<0,見解析;SKIPIF1<0,見解析;一個三角形兩邊及其夾角的正弦值的積的一半;SKIPIF1<0;SKIPIF1<0【分析】探究二:如圖2中,作SKIPIF1<0于SKIPIF1<0.求出高SKIPIF1<0,即可解決問題;探究三:如圖3中,作SKIPIF1<0于SKIPIF1<0.求出高SKIPIF1<0,即可解決問題;問題解決:SKIPIF1<0(SKIPIF1<0)是a、b兩邊的夾角);問題應(yīng)用:如圖4中,作AH⊥CB于H.求出高SKIPIF1<0,即可解決問題;問題拓廣:如圖5,連接SKIPIF1<0,由探究三的結(jié)論可得出答案.【詳解】解:探究二:如圖2中,作SKIPIF1<0于SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.探究三:如圖3中,作SKIPIF1<0于SKIPIF1<0.在SKIPIF1<0中,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0.問題解決:一個三角形兩邊及其夾角的正弦值的積的一半.故答案為:一個三角形兩邊及其夾角的正弦值的積的一半.問題應(yīng)用:如圖4中,作SKIPIF1<0于SKIPIF1<0.在SKIPIF1<0中,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0.問題拓廣:連接SKIPIF1<0,由探究三的結(jié)論可得:SKIPIF1<0.SKIPIF1<0.SKIPIF1<0.3.(2022·寧夏銀川·校考一模)如圖,SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0的直徑和弦,半徑SKIPIF1<0于點(diǎn)SKIPIF1<0.過點(diǎn)SKIPIF1<0作SKIPIF1<0的切線與SKIPIF1<0的延長線交于點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的延長線交于點(diǎn)SKIPIF1<0.(1)求證:SKIPIF1<0是SKIPIF1<0的切線;(2)若SKIPIF1<0,SKIPIF1<0,求圖中陰影部分的面積.【答案】(1)見解析(2)SKIPIF1<0【分析】(1)連接SKIPIF1<0,可以證得SKIPIF1<0,根據(jù)全等三角形的性質(zhì)以及切線的性質(zhì)定理可以得到SKIPIF1<0,即SKIPIF1<0,即可證得SKIPIF1<0是SKIPIF1<0的切線;(2)根據(jù)垂徑定理得到SKIPIF1<0,根據(jù)切線的性質(zhì)得到SKIPIF1<0,求得SKIPIF1<0,根據(jù)等腰三角形的性質(zhì)得到SKIPIF1<0,根據(jù)勾股定理得到SKIPIF1<0,根據(jù)三角形和扇形的面積公式即可得出結(jié)論.【詳解】(1)證明:連接SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的切線,SKIPIF1<0是SKIPIF1<0的直徑,SKIPIF1<0,SKIPIF1<0于點(diǎn)SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0(SAS),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的半徑,SKIPIF1<0是SKIPIF1<0的切線.(2)解:SKIPIF1<0于點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的切線,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0.4.(2022·四川南充·模擬預(yù)測)如圖,有兩塊量角器完全重合在一起(量角器的直徑SKIPIF1<0,圓心為SKIPIF1<0),保持下面一塊不動,上面的一塊沿SKIPIF1<0所在的直線向右平移,當(dāng)圓心與點(diǎn)SKIPIF1<0重合時,量角器停止平移,此時半SKIPIF1<0與半SKIPIF1<0交于點(diǎn)SKIPIF1<0,連接SKIPIF1<0.(1)SKIPIF1<0與半SKIPIF1<0有怎樣的位置關(guān)系?請說明理由.(2)在半SKIPIF1<0的量角器上,SKIPIF1<0、SKIPIF1<0點(diǎn)的讀數(shù)分別為SKIPIF1<0、SKIPIF1<0時,問點(diǎn)SKIPIF1<0在這塊量角器上的讀數(shù)是多少?(3)求圖中陰影部分的面積.【答案】(1)SKIPIF1<0與半SKIPIF1<0相切,理由見解析;(2)SKIPIF1<0;(3)SKIPIF1<0.【分析】(1)連接SKIPIF1<0,利用直徑所對的圓周角等于SKIPIF1<0可證明SKIPIF1<0,即SKIPIF1<0與半SKIPIF1<0相切;(2)求出SKIPIF1<0,即可知點(diǎn)SKIPIF1<0在這塊量角器上的讀數(shù)是SKIPIF1<0;(3)由圖可知:SKIPIF1<0,代入可求出SKIPIF1<0..【詳解】(1)解:SKIPIF1<0與半SKIPIF1<0相切,理由如下:連接SKIPIF1<0,∵SKIPIF1<0是直徑,∴SKIPIF1<0,即SKIPIF1<0與半SKIPIF1<0相切.(2)解:連接SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0為等邊三角形,∴SKIPIF1<0,點(diǎn)SKIPIF1<0在這塊量角器上的讀數(shù)是SKIPIF1<0.(3)解:作SKIPIF1<0交于點(diǎn)D,∵SKIPIF1<0為等邊三角形,SKIPIF1<0,∴SKIPIF1<0,∵由圖可知:SKIPIF1<0,即SKIPIF1<0.5.(2022·吉林長春·校考模擬預(yù)測)定義:如果一個四邊形的一組對角互余,我們稱這個四邊形為對角互余四邊形.(1)問題SKIPIF1<0.利用下面哪組圖形可以得到一個對角互余四邊形()①兩個等腰三角形;②兩個等邊三角形;③兩個直角三角形;④兩個全等三角形.(2)如圖①,在對角互余四邊形SKIPIF1<0中,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0.若SKIPIF1<0,求四邊形SKIPIF1<0的面積和周長.(3)問題SKIPIF1<0.如圖②,在對角互余四邊形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,求四邊形SKIPIF1<0的面積和周長.(4)問題SKIPIF1<0.如圖③,在對角互余四邊形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0面積的最大值.【答案】(1)①③④(2)SKIPIF1<0,四邊形SKIPIF1<0的周長SKIPIF1<0(3)SKIPIF1<0,四邊形SKIPIF1<0的周長SKIPIF1<0(4)SKIPIF1<0面積的最大值SKIPIF1<0【分析】(1)結(jié)合定義來判斷,重點(diǎn)是拼成的四邊形一對對角互余.(2)因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以在對角互余四邊形SKIPIF1<0中,只能SKIPIF1<0.這樣利用含SKIPIF1<0直角三角形三邊的特殊關(guān)系,就可以解決問題;(3)如圖,將SKIPIF1<0繞點(diǎn)B順時針旋轉(zhuǎn)到SKIPIF1<0,則SKIPIF1<0,連接SKIPIF1<0,作SKIPIF1<0于H,作SKIPIF1<0于G,作SKIPIF1<0于F,這樣可以求SKIPIF1<0,則可以得到SKIPIF1<0的長,進(jìn)而把四邊形SKIPIF1<0的面積轉(zhuǎn)化為SKIPIF1<0和SKIPIF1<0的面積之和,SKIPIF1<0和SKIPIF1<0的面積容易算出來,則四邊形SKIPIF1<0面積可求.再求出SKIPIF1<0和SKIPIF1<0的長度,就可以得到SKIPIF1<0和SKIPIF1<0的長,利用勾股定理可以求出SKIPIF1<0的長,四邊形SKIPIF1<0的周長可求.(4)構(gòu)造SKIPIF1<0,根據(jù)SKIPIF1<0,利用相似的性質(zhì)和勾股定理求出SKIPIF1<0,然后根據(jù)對角互余四邊形的性質(zhì)得到SKIPIF1<0,從而得到SKIPIF1<0四點(diǎn)共圓,而SKIPIF1<0與SKIPIF1<0同底,高成比例,從而得出SKIPIF1<0,根據(jù)SKIPIF1<0面積最大值可求SKIPIF1<0面積的最大值.【詳解】(1)解:①兩個等腰三角形底邊相等,頂角互余,就可以,故①可以得到一個對角互余四邊形;②等邊三角形不成,即使是全等的等邊三角形拼成四邊形對角和為120°或240°,故②得不到對角互余四邊形;③兩個全等的直角三角形或有一條直角邊相等的相似的兩個直角三角都可以,故③可以得到一個對角互余四邊形;④由③可知④可以得到一個對角互余四邊形;故答案為:①③④;(2)∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵對角互余四邊形SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,四邊形SKIPIF1<0的周長SKIPIF1<0;(3)如圖,將SKIPIF1<0繞點(diǎn)B順時針旋轉(zhuǎn)到SKIPIF1<0,則SKIPIF1<0,連接SKIPIF1<0,作SKIPIF1<0于H,作SKIPIF1<0于G,作SKIPIF1<0于F.∴SKIPIF1<0,∴四邊形SKIPIF1<0是矩形,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0;∴SKIPIF1<0;∵SKIPIF1<0,∴SKIPIF1<0,∴在SKIPIF1<0中,根據(jù)勾股定理可得SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴根據(jù)勾股定理可得SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,根據(jù)勾股定理可得SKIPIF1<0,∴SKIPIF1<0,∴四邊形SKIPIF1<0的周長SKIPIF1<0;(4)如圖:作SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,過P點(diǎn)作SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴連接SKIPIF1<0,由作SKIPIF1<0可得SKIPIF1<0,由對角互余四邊形SKIPIF1<0,可得SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0四點(diǎn)在以SKIPIF1<0為直徑的圓上,作SKIPIF1<0,設(shè)SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0面積最大時是以SKIPIF1<0為斜邊的等腰直角三角形,如圖:故SKIPIF1<0面積最大SKIPIF1<0,所以SKIPIF1<0面積的最大值SKIPIF1<0.6.(2022·吉林長春·校考模擬預(yù)測)【教材呈現(xiàn)】如圖是華師版九年級上冊數(shù)學(xué)教材第77頁的部分內(nèi)容:如圖,在SKIPIF1<0中,點(diǎn)SKIP
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年外研版七年級科學(xué)下冊階段測試試卷
- 機(jī)場洗車場租賃協(xié)議
- 2024年華東師大版高三數(shù)學(xué)上冊階段測試試卷
- 2024年北師大新版七年級生物上冊階段測試試卷
- 2024年04月中國郵政儲蓄銀行股份有限公司廣西壯族自治區(qū)分行2024年春季校園招考筆試歷年參考題庫附帶答案詳解
- 2024年中圖版選擇性必修1生物下冊階段測試試卷
- 教育改革清罐施工協(xié)議
- 2024年滬科版七年級語文下冊月考試卷含答案
- 生態(tài)藥品生產(chǎn)施工代理合同
- 航空航天柴油發(fā)電機(jī)租賃合同
- 中國藥典無菌、微生物限度和細(xì)菌內(nèi)毒素檢查方法學(xué)驗(yàn)證內(nèi)容詳解
- 《實(shí)用日本語應(yīng)用文寫作》全套電子課件完整版ppt整本書電子教案最全教學(xué)教程整套課件
- 公司員工手冊-全文(完整版)
- 鍋爐習(xí)題帶答案
- 土木工程課程設(shè)計(jì)38281
- 農(nóng)村宅基地地籍測繪技術(shù)方案
- 液壓爬模作業(yè)指導(dǎo)書
- 劇院的建筑設(shè)計(jì)規(guī)范標(biāo)準(zhǔn)
- 遺傳分析的一個基本原理是DNA的物理距離和遺傳距離方面...
- 安全生產(chǎn)標(biāo)準(zhǔn)化管理工作流程圖
- 初一英語單詞辨音專項(xiàng)練習(xí)(共4頁)
評論
0/150
提交評論