版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題16函數(shù)的圖像變換問(wèn)題函數(shù)圖像的變換問(wèn)題的考查一般難度較大,但關(guān)鍵是要理清圖像變換前后的解析式的關(guān)系,圖像變換的規(guī)律以二次函數(shù)為例:1.保持y=ax2的形狀不變,將其頂點(diǎn)平移到(h,k)處,具體平移方法如下:2.二次函數(shù)平移遵循“上加下減,左加右減”的原則,據(jù)此,可以直接由解析式中常數(shù)的加或減求出變化后的解析式;二次函數(shù)圖象的平移可看作頂點(diǎn)間的平移,可根據(jù)頂點(diǎn)之間的平移求出變化后的解析式. (2022·湖北恩施·統(tǒng)考中考真題)在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線SKIPIF1<0與y軸交于點(diǎn)SKIPIF1<0.(1)直接寫(xiě)出拋物線的解析式.(2)如圖,將拋物線SKIPIF1<0向左平移1個(gè)單位長(zhǎng)度,記平移后的拋物線頂點(diǎn)為Q,平移后的拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸交于點(diǎn)C.判斷以B、C、Q三點(diǎn)為頂點(diǎn)的三角形是否為直角三角形,并說(shuō)明理由.(3)直線BC與拋物線SKIPIF1<0交于M、N兩點(diǎn)(點(diǎn)N在點(diǎn)M的右側(cè)),請(qǐng)?zhí)骄吭趚軸上是否存在點(diǎn)T,使得以B、N、T三點(diǎn)為頂點(diǎn)的三角形與SKIPIF1<0相似,若存在,請(qǐng)求出點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(4)若將拋物線SKIPIF1<0進(jìn)行適當(dāng)?shù)钠揭疲?dāng)平移后的拋物線與直線BC最多只有一個(gè)公共點(diǎn)時(shí),請(qǐng)直接寫(xiě)出拋物線SKIPIF1<0平移的最短距離并求出此時(shí)拋物線的頂點(diǎn)坐標(biāo).(1)待定系數(shù)法求二次函數(shù)解析式;(2)分別求得B、C、Q的坐標(biāo),勾股定理的逆定理驗(yàn)證即可求解;(3)由SKIPIF1<0,故分兩種情況討論,根據(jù)相似三角形的性質(zhì)與判定即可求解;(4)如圖,作SKIPIF1<0且與拋物線只有1個(gè)交點(diǎn),交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,則SKIPIF1<0是等腰直角三角形,作SKIPIF1<0于SKIPIF1<0,進(jìn)而求得直線SKIPIF1<0與SKIPIF1<0的距離,即為所求最短距離,進(jìn)而求得平移方式,將頂點(diǎn)坐標(biāo)平移即可求解.【答案】(1)SKIPIF1<0(2)以B、C、Q三點(diǎn)為頂點(diǎn)的三角形是直角三角形,理由見(jiàn)解析(3)存在,SKIPIF1<0或SKIPIF1<0,(4)最短距離為SKIPIF1<0,平移后的頂點(diǎn)坐標(biāo)為SKIPIF1<0【詳解】(1)解:∵拋物線SKIPIF1<0與y軸交于點(diǎn)SKIPIF1<0∴SKIPIF1<0SKIPIF1<0拋物線解析式為SKIPIF1<0(2)以B、C、Q三點(diǎn)為頂點(diǎn)的三角形是直角三角形,理由如下:SKIPIF1<0SKIPIF1<0的頂點(diǎn)坐標(biāo)為SKIPIF1<0依題意得,SKIPIF1<0SKIPIF1<0平移后的拋物線解析式為SKIPIF1<0令SKIPIF1<0,解SKIPIF1<0得SKIPIF1<0SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0以B、C、Q三點(diǎn)為頂點(diǎn)的三角形是直角三角形(3)存在,SKIPIF1<0或SKIPIF1<0,理由如下,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0是等腰直角三角形設(shè)直線SKIPIF1<0的解析式為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0的解析式為SKIPIF1<0,聯(lián)立SKIPIF1<0解得SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是等腰直角三角形SKIPIF1<0SKIPIF1<0,SKIPIF1<0設(shè)直線SKIPIF1<0的解析式為SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0直線SKIPIF1<0的解析式為SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0設(shè)SKIPIF1<0的解析式為SKIPIF1<0,由NT過(guò)點(diǎn)SKIPIF1<0則SKIPIF1<0解得SKIPIF1<0SKIPIF1<0SKIPIF1<0的解析式為SKIPIF1<0,令SKIPIF1<0解得SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0②當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0即SKIPIF1<0解得SKIPIF1<0SKIPIF1<0SKIPIF1<0綜上所述,SKIPIF1<0或SKIPIF1<0(4)如圖,作SKIPIF1<0,交SKIPIF1<0軸于點(diǎn)SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0于點(diǎn)SKIPIF1<0,則SKIPIF1<0是等腰直角三角形,作SKIPIF1<0于SKIPIF1<0SKIPIF1<0直線SKIPIF1<0的解析式為SKIPIF1<0設(shè)與SKIPIF1<0平行的且與SKIPIF1<0只有一個(gè)公共點(diǎn)的直線SKIPIF1<0解析式為SKIPIF1<0則SKIPIF1<0整理得:SKIPIF1<0則SKIPIF1<0解得SKIPIF1<0SKIPIF1<0直線SKIPIF1<0的解析式為SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0即拋物線SKIPIF1<0平移的最短距離為SKIPIF1<0,方向?yàn)镾KIPIF1<0方向SKIPIF1<0∴把點(diǎn)P先向右平移EF的長(zhǎng)度,再向下平移FC的長(zhǎng)度即得到平移后的坐標(biāo)SKIPIF1<0平移后的頂點(diǎn)坐標(biāo)為SKIPIF1<0,即SKIPIF1<0本題是二次函數(shù)綜合,考查了相似三角形的性質(zhì),求二次函數(shù)與一次函數(shù)解析式,二次函數(shù)圖象的平移,勾股定理的逆定理,正確的添加輔助線以及正確的計(jì)算是解題的關(guān)鍵.(2022·遼寧沈陽(yáng)·統(tǒng)考中考真題)如圖,平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),拋物線SKIPIF1<0經(jīng)過(guò)點(diǎn)SKIPIF1<0和點(diǎn)SKIPIF1<0與x軸另一個(gè)交點(diǎn)A.拋物線與y軸交于點(diǎn)C,作直線AD.(1)①求拋物線的函數(shù)表達(dá)式②并直接寫(xiě)出直線AD的函數(shù)表達(dá)式.(2)點(diǎn)E是直線AD下方拋物線上一點(diǎn),連接BE交AD于點(diǎn)F,連接BD,DE,SKIPIF1<0的面積記為SKIPIF1<0,SKIPIF1<0的面積記為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),求點(diǎn)E的坐標(biāo);(3)點(diǎn)G為拋物線的頂點(diǎn),將拋物線圖象中x軸下方部分沿x軸向上翻折,與拋物線剩下部分組成新的曲線為SKIPIF1<0,點(diǎn)C的對(duì)應(yīng)點(diǎn)SKIPIF1<0,點(diǎn)G的對(duì)應(yīng)點(diǎn)SKIPIF1<0,將曲線SKIPIF1<0,沿y軸向下平移n個(gè)單位長(zhǎng)度(SKIPIF1<0).曲線SKIPIF1<0與直線BC的公共點(diǎn)中,選兩個(gè)公共點(diǎn)作點(diǎn)P和點(diǎn)Q,若四邊形SKIPIF1<0是平行四邊形,直接寫(xiě)出P的坐標(biāo).(1)①利用待定系數(shù)解答,即可求解;②利用待定系數(shù)解答,即可求解;(2)過(guò)點(diǎn)E作EG⊥x軸交AD于點(diǎn)G,過(guò)點(diǎn)B作BH⊥x軸交AD于點(diǎn)H,設(shè)點(diǎn)SKIPIF1<0,則點(diǎn)SKIPIF1<0,可得SKIPIF1<0,然后根據(jù)△EFG∽△BFH,即可求解;(3)先求出向上翻折部分的圖象解析式為SKIPIF1<0,可得向上翻折部分平移后的函數(shù)解析式為SKIPIF1<0,平移后拋物線剩下部分的解析式為SKIPIF1<0,分別求出直線BC和直線SKIPIF1<0的解析式為,可得BC∥C′G′,再根據(jù)平行四邊形的性質(zhì)可得點(diǎn)SKIPIF1<0,然后分三種情況討論:當(dāng)點(diǎn)P,Q均在向上翻折部分平移后的圖象上時(shí);當(dāng)點(diǎn)P在向上翻折部分平移后的圖象上,點(diǎn)Q在平移后拋物線剩下部分的圖象上時(shí);當(dāng)點(diǎn)P在平移后拋物線剩下部分的圖象上,點(diǎn)Q在向上翻折部分平移后的圖象上時(shí),即可求解.【答案】(1)①SKIPIF1<0;②SKIPIF1<0(2)(2,-4)或(0,-3)(3)(1+SKIPIF1<0,SKIPIF1<0)或SKIPIF1<0【詳解】(1)解:①把點(diǎn)SKIPIF1<0和點(diǎn)SKIPIF1<0代入得:SKIPIF1<0,解得:SKIPIF1<0,∴拋物線解析式為SKIPIF1<0;②令y=0,則SKIPIF1<0,解得:SKIPIF1<0,∴點(diǎn)A(-2,0),設(shè)直線AD的解析式為SKIPIF1<0,∴把點(diǎn)SKIPIF1<0和點(diǎn)A(-2,0)代入得:SKIPIF1<0,解得:SKIPIF1<0,∴直線AD的解析式為SKIPIF1<0;(2)解:如圖,過(guò)點(diǎn)E作EG⊥x軸交AD于點(diǎn)G,過(guò)點(diǎn)B作BH⊥x軸交AD于點(diǎn)H,當(dāng)x=6時(shí),SKIPIF1<0,∴點(diǎn)H(6,-4),即BH=4,設(shè)點(diǎn)SKIPIF1<0,則點(diǎn)SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0的面積記為SKIPIF1<0,SKIPIF1<0的面積記為SKIPIF1<0,且SKIPIF1<0,∴BF=2EF,∵EG⊥x,BH⊥x軸,∴△EFG∽△BFH,∴SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0或0,∴點(diǎn)E的坐標(biāo)為(2,-4)或(0,-3);(3)解:SKIPIF1<0,∴點(diǎn)G的坐標(biāo)為(2,-4),當(dāng)x=0時(shí),y=-3,即點(diǎn)C(0,-3),∴點(diǎn)SKIPIF1<0,∴向上翻折部分的圖象解析式為SKIPIF1<0,∴向上翻折部分平移后的函數(shù)解析式為SKIPIF1<0,平移后拋物線剩下部分的解析式為SKIPIF1<0,設(shè)直線BC的解析式為SKIPIF1<0,把點(diǎn)B(6,0),C(0,-3)代入得:SKIPIF1<0,解得:SKIPIF1<0,∴直線BC的解析式為SKIPIF1<0,同理直線SKIPIF1<0的解析式為SKIPIF1<0,∴BC∥C′G′,設(shè)點(diǎn)P的坐標(biāo)為SKIPIF1<0,∵點(diǎn)SKIPIF1<0,∴點(diǎn)C′向右平移2個(gè)單位,再向上平移1個(gè)單位得到點(diǎn)G′,∵四邊形SKIPIF1<0是平行四邊形,∴點(diǎn)SKIPIF1<0,當(dāng)點(diǎn)P,Q均在向上翻折部分平移后的圖象上時(shí),SKIPIF1<0,解得:SKIPIF1<0(不合題意,舍去),當(dāng)點(diǎn)P在向上翻折部分平移后的圖象上,點(diǎn)Q在平移后拋物線剩下部分的圖象上時(shí),SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0(不合題意,舍去),當(dāng)點(diǎn)P在平移后拋物線剩下部分的圖象上,點(diǎn)Q在向上翻折部分平移后的圖象上時(shí),SKIPIF1<0,解得:SKIPIF1<0(舍去,不合題意)或SKIPIF1<0,綜上所述,點(diǎn)P的坐標(biāo)為綜上所述,點(diǎn)P的坐標(biāo)為(1+SKIPIF1<0,SKIPIF1<0)或(1﹣SKIPIF1<0,SKIPIF1<0).本題主要考查了二次函數(shù)的綜合題,熟練掌握二次函數(shù)的圖象和性質(zhì),平行四邊形的性質(zhì),相似三角形的判定和性質(zhì),并利用數(shù)形結(jié)合思想解答是解題的關(guān)鍵.(2021·廣西梧州·統(tǒng)考中考真題)如圖,在平面直角坐標(biāo)系中,拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)A(﹣1,0),B(0,3),頂點(diǎn)為C.平移此拋物線,得到一條新的拋物線,且新拋物線上的點(diǎn)D(3,﹣1)為原拋物線上點(diǎn)A的對(duì)應(yīng)點(diǎn),新拋物線頂點(diǎn)為E,它與y軸交于點(diǎn)G,連接CG,EG,CE.(1)求原拋物線對(duì)應(yīng)的函數(shù)表達(dá)式;(2)在原拋物線或新拋物線上找一點(diǎn)F,使以點(diǎn)C,E,F(xiàn),G為頂點(diǎn)的四邊形是平行四邊形,并求出點(diǎn)F的坐標(biāo);(3)若點(diǎn)K是y軸上的一個(gè)動(dòng)點(diǎn),且在點(diǎn)B的上方,過(guò)點(diǎn)K作CE的平行線,分別交兩條拋物線于點(diǎn)M,N,且點(diǎn)M,N分別在y軸的兩側(cè),當(dāng)MN=CE時(shí),請(qǐng)直接寫(xiě)出點(diǎn)K的坐標(biāo).(1)根據(jù)待定系數(shù)法將點(diǎn)A(﹣1,0),B(0,3)代入拋物線y=x2+bx+c,即可求出原拋物線解析式;(2)根據(jù)新拋物線上的點(diǎn)D(3,﹣1)為原拋物線上點(diǎn)A的對(duì)應(yīng)點(diǎn)可知拋物線平移方式為右移4個(gè)單位下移1個(gè)單位,從而確定新拋物線解析式,進(jìn)而確定點(diǎn)C、D、G坐標(biāo),由以點(diǎn)C,E,F(xiàn),G為頂點(diǎn)的四邊形是平行四邊形即可確定點(diǎn)F坐標(biāo)的可能位置,判斷是否在原拋物線或新拋物線上即可解答;(3)由SKIPIF1<0,MN=CE,可知M點(diǎn)到N點(diǎn)的平移方式和C點(diǎn)到E點(diǎn)平移方式相同,故可設(shè)點(diǎn)M坐標(biāo)為(a,b),可得點(diǎn)N坐標(biāo)為(a+4,b-1),由圖像可知M在新拋物線、N在原拋物線上,據(jù)此列方程求出點(diǎn)M、N坐標(biāo),由直線MN解析式即可求出與y軸交點(diǎn)坐標(biāo)即K點(diǎn)坐標(biāo).【答案】(1)SKIPIF1<0;(2)F(-4,3),(3)SKIPIF1<0.【詳解】解:(1)由拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)A(﹣1,0),B(0,3),得:SKIPIF1<0,解得:SKIPIF1<0,∴原拋物線對(duì)應(yīng)的函數(shù)表達(dá)式為:SKIPIF1<0;(2)由(1)得:原拋物線為:SKIPIF1<0,故頂點(diǎn)C坐標(biāo)為SKIPIF1<0∵新拋物線上的點(diǎn)D(3,﹣1)為原拋物線上點(diǎn)A的對(duì)應(yīng)點(diǎn),∴原拋物線向右移4個(gè)單位,向下移1個(gè)單位得到新拋物線,∴新拋物線對(duì)應(yīng)的函數(shù)表達(dá)式為:SKIPIF1<0,即:SKIPIF1<0故新拋物線頂E點(diǎn)坐標(biāo)為SKIPIF1<0,與y軸交點(diǎn)G坐標(biāo)為SKIPIF1<0,以點(diǎn)C,E,F(xiàn),G為頂點(diǎn)的四邊形是平行四邊形,點(diǎn)F不可能在CE下方,故如圖所示:當(dāng)平行四邊形為SKIPIF1<0時(shí),點(diǎn)F坐標(biāo)為SKIPIF1<0,即SKIPIF1<0,根據(jù)平移性質(zhì)可知:SKIPIF1<0一定在原拋物線;當(dāng)平行四邊形為SKIPIF1<0時(shí),點(diǎn)F坐標(biāo)為SKIPIF1<0,即SKIPIF1<0,此時(shí)SKIPIF1<0;故不在新拋物線上,綜上所述:以點(diǎn)C,E,F(xiàn),G為頂點(diǎn)的四邊形是SKIPIF1<0時(shí),F(xiàn)的坐標(biāo)為SKIPIF1<0;(3)∵SKIPIF1<0,MN=CE,∴M點(diǎn)到N點(diǎn)的平移方式和C點(diǎn)到E點(diǎn)平移方式相同,設(shè)M在左側(cè),坐標(biāo)為(a,b),則點(diǎn)N坐標(biāo)為(a+4,b-1),由圖可知,點(diǎn)M在新拋物線,點(diǎn)N在原拋物線,SKIPIF1<0,解得:SKIPIF1<0,即M點(diǎn)坐標(biāo)為SKIPIF1<0,∴點(diǎn)N坐標(biāo)為SKIPIF1<0,設(shè)直線MN解析式為SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,即:SKIPIF1<0,故直線MN與y軸交點(diǎn)K坐標(biāo)為SKIPIF1<0.本題主要考查了函數(shù)圖像的平移、函數(shù)圖像與幾何圖形結(jié)合的綜合能力的培養(yǎng),要會(huì)利用數(shù)形結(jié)合的思想把代數(shù)和幾何圖形結(jié)合起來(lái),掌握?qǐng)D像平移的性質(zhì)確定函數(shù)解析式和點(diǎn)的坐標(biāo)是解題關(guān)鍵.1.(2022·重慶開(kāi)州·校聯(lián)考模擬)如圖1,拋物線SKIPIF1<0與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,過(guò)點(diǎn)B作直線SKIPIF1<0直線SKIPIF1<0,交拋物線y于另一點(diǎn)D,點(diǎn)P為直線SKIPIF1<0上方拋物線上一動(dòng)點(diǎn).(1)求線段SKIPIF1<0的長(zhǎng).(2)過(guò)點(diǎn)P作SKIPIF1<0軸交SKIPIF1<0于點(diǎn)Q,交直線SKIPIF1<0于點(diǎn)F,過(guò)點(diǎn)P作SKIPIF1<0于點(diǎn)E,求SKIPIF1<0的最大值及此時(shí)點(diǎn)P的坐標(biāo).(3)如圖2,將拋物線SKIPIF1<0向右平移3個(gè)單位得到新拋物線SKIPIF1<0,點(diǎn)M為新拋物線上一點(diǎn),點(diǎn)N為原拋物線對(duì)稱軸一點(diǎn),直接寫(xiě)出所有使得A、B、M、N為頂點(diǎn)的四邊形是平行四邊形時(shí)點(diǎn)N的坐標(biāo),并寫(xiě)出其中一個(gè)點(diǎn)N的坐標(biāo)的求解過(guò)程.【答案】(1)4(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有最大值為SKIPIF1<0,此時(shí)SKIPIF1<0;(3)SKIPIF1<0,SKIPIF1<0和SKIPIF1<0【思路分析】(1)令SKIPIF1<0,求解即可;(2)求直線SKIPIF1<0的解析式,設(shè)點(diǎn)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,利用SKIPIF1<0,將所求轉(zhuǎn)化為SKIPIF1<0,再求解即可;(3)推出平移后的解析式,設(shè)SKIPIF1<0,SKIPIF1<0,分三種情況討論;再利用平行四邊形的性質(zhì)結(jié)合中點(diǎn)坐標(biāo)求解即可.【詳解】(1)令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0,SKIPIF1<0,設(shè)直線SKIPIF1<0的解析式為SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,∴直線SKIPIF1<0的解析式為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0的解析式為SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,∵點(diǎn)P為直線SKIPIF1<0上方拋物線上一動(dòng)點(diǎn),SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有最大值為SKIPIF1<0,此時(shí)SKIPIF1<0;(3)SKIPIF1<0,∴拋物線對(duì)稱軸為直線SKIPIF1<0,∵拋物線SKIPIF1<0向右平移3個(gè)單位得到新拋物線SKIPIF1<0,∴新拋物線SKIPIF1<0的解析式為SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,①當(dāng)SKIPIF1<0為平行四邊形的對(duì)角線時(shí),SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;②當(dāng)SKIPIF1<0為平行四邊形的對(duì)角線時(shí),SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;③當(dāng)SKIPIF1<0為平行四邊形的對(duì)角線時(shí),SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;綜上,N點(diǎn)坐標(biāo)分別為SKIPIF1<0,SKIPIF1<0和SKIPIF1<0.2.(2021·山東濱州·模擬)如圖,在平面直角坐標(biāo)系中,拋物線SKIPIF1<0分別交SKIPIF1<0軸,SKIPIF1<0軸于點(diǎn)A,SKIPIF1<0和點(diǎn)SKIPIF1<0,拋物線SKIPIF1<0與拋物線SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱,兩條拋物線的交點(diǎn)為SKIPIF1<0,SKIPIF1<0(點(diǎn)SKIPIF1<0在點(diǎn)SKIPIF1<0的左側(cè)).(1)求拋物線SKIPIF1<0的表達(dá)式;(2)將拋物線SKIPIF1<0沿SKIPIF1<0軸正方向平移,使點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0重合,求平移的距離;(3)在(2)的條件下:規(guī)定拋物線SKIPIF1<0和拋物線SKIPIF1<0在直線SKIPIF1<0下方的圖象所組成的圖象為SKIPIF1<0,點(diǎn)SKIPIF1<0,SKIPIF1<0和SKIPIF1<0,SKIPIF1<0在函數(shù)SKIPIF1<0上(點(diǎn)SKIPIF1<0在點(diǎn)SKIPIF1<0的右側(cè)),在(2)的條件下,若SKIPIF1<0,且SKIPIF1<0,求點(diǎn)SKIPIF1<0坐標(biāo).【答案】(1)SKIPIF1<0(2)1(3)點(diǎn)SKIPIF1<0坐標(biāo)為:SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,SKIPIF1<0【思路分析】(1)由SKIPIF1<0得拋物線SKIPIF1<0的頂點(diǎn)坐標(biāo)為:SKIPIF1<0,即得拋物線SKIPIF1<0的頂點(diǎn)為SKIPIF1<0,從而拋物線SKIPIF1<0的表達(dá)式為SKIPIF1<0;(2)由SKIPIF1<0得SKIPIF1<0,設(shè)拋物線SKIPIF1<0向右平移SKIPIF1<0個(gè)單位后SKIPIF1<0與SKIPIF1<0重合,即SKIPIF1<0過(guò)SKIPIF1<0,可得平移的距離是1;(3)拋物線SKIPIF1<0向右平移1個(gè)單位得SKIPIF1<0,由SKIPIF1<0,的SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0在SKIPIF1<0左側(cè)圖象上時(shí),SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0;當(dāng)SKIPIF1<0在SKIPIF1<0、SKIPIF1<0之間的圖象上時(shí),分兩種情況:①SKIPIF1<0在拋物線SKIPIF1<0上,SKIPIF1<0,即得SKIPIF1<0,SKIPIF1<0;②SKIPIF1<0在拋物線SKIPIF1<0上,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0.【詳解】(1)解:SKIPIF1<0,SKIPIF1<0拋物線SKIPIF1<0的頂點(diǎn)坐標(biāo)為:SKIPIF1<0,SKIPIF1<0點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱點(diǎn)為SKIPIF1<0,拋物線SKIPIF1<0與拋物線SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱,SKIPIF1<0拋物線SKIPIF1<0的頂點(diǎn)為SKIPIF1<0,且拋物線SKIPIF1<0與拋物線SKIPIF1<0的形狀、大小相同,開(kāi)口方向相反,SKIPIF1<0拋物線SKIPIF1<0的表達(dá)式為SKIPIF1<0.(2)解:在SKIPIF1<0中,令SKIPIF1<0得SKIPIF1<0,SKIPIF1<0,設(shè)拋物線SKIPIF1<0向右平移SKIPIF1<0個(gè)單位后SKIPIF1<0與SKIPIF1<0重合,即SKIPIF1<0過(guò)SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),SKIPIF1<0平移的距離是1.(3)解:由(2)知,拋物線SKIPIF1<0向右平移1個(gè)單位,可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0在SKIPIF1<0左側(cè)圖象上時(shí),如圖:SKIPIF1<0在拋物線SKIPIF1<0上,SKIPIF1<0在拋物線SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0(舍去)或SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;當(dāng)SKIPIF1<0在SKIPIF1<0、SKIPIF1<0之間的圖象上時(shí),分兩種情況:①SKIPIF1<0在拋物線SKIPIF1<0上,如圖:SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,即得SKIPIF1<0或SKIPIF1<0(舍去),SKIPIF1<0,SKIPIF1<0;②SKIPIF1<0在SKIPIF1<0、SKIPIF1<0之間的圖象上,如圖:SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,綜上所述,點(diǎn)SKIPIF1<0坐標(biāo)為:SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,SKIPIF1<0.3.(2022·陜西渭南·統(tǒng)考三模)在平面直角坐標(biāo)系中,已知拋物線SKIPIF1<0(b、c為常數(shù))與x軸交于SKIPIF1<0、SKIPIF1<0兩點(diǎn).(1)求拋物線SKIPIF1<0的函數(shù)表達(dá)式;(2)將該拋物線SKIPIF1<0向右平移4個(gè)單位長(zhǎng)度得到新的拋物線SKIPIF1<0,與原拋物線SKIPIF1<0交于點(diǎn)C,點(diǎn)D是點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn),點(diǎn)N在平面直角坐標(biāo)系中,請(qǐng)問(wèn)在拋物線SKIPIF1<0上是否存在點(diǎn)M,使得以點(diǎn)C、D、M、N為頂點(diǎn)的四邊形是以CD為邊的矩形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.【答案】(1)SKIPIF1<0(2)存在,點(diǎn)M的坐標(biāo)為SKIPIF1<0或SKIPIF1<0或SKIPIF1<0【思路分析】(1)利用待定系數(shù)法直接求解即可;(2)存在,根據(jù)題意求得拋物線SKIPIF1<0的表達(dá)式,再與拋物線SKIPIF1<0聯(lián)立,求得點(diǎn)C的坐標(biāo),進(jìn)而求得點(diǎn)D的坐標(biāo);要使得以點(diǎn)C、D、M、N為頂點(diǎn)的四邊形是以CD為邊的矩形,分當(dāng)M在x軸上方時(shí)和當(dāng)M在x軸下方時(shí),兩種情況討論,根據(jù)矩形的性質(zhì)列出方程,求解即可.【詳解】(1)解:把SKIPIF1<0、SKIPIF1<0代入SKIPIF1<0中,得SKIPIF1<0解得SKIPIF1<0∴拋物線SKIPIF1<0的函數(shù)表達(dá)式為SKIPIF1<0.(2)解:存在.理由如下:∵SKIPIF1<0,∴拋物線SKIPIF1<0的函數(shù)表達(dá)式SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴點(diǎn)C的坐標(biāo)為SKIPIF1<0,∵點(diǎn)D是點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn),∴點(diǎn)D的坐標(biāo)為SKIPIF1<0.①當(dāng)M在x軸上方時(shí),要使得以點(diǎn)C、D、M、N為頂點(diǎn)的四邊形是以CD為邊的矩形,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0(舍去),SKIPIF1<0,∴SKIPIF1<0;②當(dāng)M在x軸下方時(shí),要使得以點(diǎn)C、D、M、N為頂點(diǎn)的四邊形是以CD為邊的矩形,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0.綜上,在拋物線SKIPIF1<0上存在點(diǎn)M,使得以點(diǎn)C、D、M、N為頂點(diǎn)的四邊形是以CD為邊的矩形,點(diǎn)M的坐標(biāo)為SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.4.(2022·廣東深圳·深圳市寶安第一外國(guó)語(yǔ)學(xué)校??既#┮阎獟佄锞€SKIPIF1<0:SKIPIF1<0與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0的直線與SKIPIF1<0交于點(diǎn)SKIPIF1<0.(1)求直線SKIPIF1<0的函數(shù)表達(dá)式;(2)如圖SKIPIF1<0,若點(diǎn)SKIPIF1<0為直線SKIPIF1<0下方的SKIPIF1<0上一點(diǎn),求點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離的最大值;(3)如圖SKIPIF1<0,將直線SKIPIF1<0繞點(diǎn)SKIPIF1<0順時(shí)針旋轉(zhuǎn)SKIPIF1<0后恰好經(jīng)過(guò)SKIPIF1<0的頂點(diǎn)SKIPIF1<0,沿射線SKIPIF1<0的方向平移拋物線SKIPIF1<0得到拋物線SKIPIF1<0,SKIPIF1<0的頂點(diǎn)為SKIPIF1<0,兩拋物線相交于點(diǎn)SKIPIF1<0設(shè)交點(diǎn)SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0若SKIPIF1<0,求SKIPIF1<0的值.【答案】(1)y=x+2(2)SKIPIF1<0(3)SKIPIF1<0【思路分析】(1)先根據(jù)拋物線的函數(shù)表達(dá)式求出點(diǎn)A的坐標(biāo),再將點(diǎn)A的坐標(biāo)和(1,3)代入y=kx+b,即可求出直線AB的函數(shù)表達(dá)式;(2)過(guò)點(diǎn)P作SKIPIF1<0交直線AB于點(diǎn)Q,過(guò)點(diǎn)P作PM⊥AB,垂足為點(diǎn)M,易證△MPQ為等腰直角三角形,分別表示出點(diǎn)P和點(diǎn)Q的坐標(biāo),求出PQ的最大值,當(dāng)PQ取最大值時(shí)PM也取最大值,(3)過(guò)點(diǎn)E作SKIPIF1<0,交x軸于點(diǎn)P,過(guò)點(diǎn)D作DQ⊥PQ,垂足為Q,易證△APE~△DEQ,將點(diǎn)D的坐標(biāo)用m表示出來(lái),根據(jù)SKIPIF1<0即可求出m的值.【詳解】(1)解:當(dāng)x=0時(shí),SKIPIF1<0,∴A(0,2),設(shè)直線AB的函數(shù)表達(dá)式為:y=kx+b,把A(0,2)和(1,3)代入y=kx+b,SKIPIF1<0,解得:SKIPIF1<0,∴直線AB得函數(shù)表達(dá)式為:y=x+2.(2)將拋物線的函數(shù)表達(dá)式整理為一般式為:SKIPIF1<0,如圖,過(guò)點(diǎn)P作SKIPIF1<0交直線AB于點(diǎn)Q,過(guò)點(diǎn)P作PM⊥AB,垂足為點(diǎn)M,設(shè)點(diǎn)P的坐標(biāo)為(a,SKIPIF1<0),∵SKIPIF1<0,∴點(diǎn)Q的橫坐標(biāo)為a,∵點(diǎn)Q在直線AB上,∴點(diǎn)Q的坐標(biāo)為(a,a+2),∴SKIPIF1<0,整理得:SKIPIF1<0,當(dāng)a=SKIPIF1<0時(shí),PQ有最大值,最大值為SKIPIF1<0,∵直線AB與豎直方向得夾角為45°,∴∠MQP=45°,∴△MPQ為等腰直角三角形,∴PM=SKIPIF1<0,當(dāng)PQ取最大值時(shí),PM也取最大值,∴PM的最大值為:SKIPIF1<0,(3)∵拋物線的函數(shù)表達(dá)式為:SKIPIF1<0,∴頂點(diǎn)C(1,1),設(shè)直線AC的函數(shù)表達(dá)式為:y=kx+b,將點(diǎn)C和點(diǎn)A的坐標(biāo)代入得:SKIPIF1<0,解得:SKIPIF1<0,∴直線AC的函數(shù)表達(dá)式為:y=-x+2,設(shè)點(diǎn)D的橫坐標(biāo)為b,∵點(diǎn)D在直線AC上,∴點(diǎn)D的縱坐標(biāo)為-b+2,即D(b,-b+2),∴SKIPIF1<0的函數(shù)表達(dá)式為:SKIPIF1<0,E的橫坐標(biāo)為m,∵點(diǎn)E在拋物線SKIPIF1<0上,∴點(diǎn)E的縱坐標(biāo)為:SKIPIF1<0,∵點(diǎn)E也在拋物線SKIPIF1<0上,∴點(diǎn)E的縱坐標(biāo)為:SKIPIF1<0,∴SKIPIF1<0=SKIPIF1<0,整理得:SKIPIF1<0解得:b=2m或b=1(舍),∴D(2m,-2m+2),過(guò)點(diǎn)E作SKIPIF1<0,交x軸于點(diǎn)P,過(guò)點(diǎn)D作DQ⊥PQ,垂足為Q,∵∠AED=90°,∠EPA=90°,∴∠AEP+∠DEQ=90°,∠AEP+∠EAP=90°,∴∠DEQ=∠EAP,在△APE和△DEQ中,∠DEQ=∠EAP,∠APE=∠DQE,∴△APE~△DEQ,∴SKIPIF1<0,∵A(0,2),E(m,SKIPIF1<0),D(2m,-2m+2),∴PE=m,EQ=m,DQ=SKIPIF1<0,AP=SKIPIF1<0,∴SKIPIF1<0,整理得:SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0(舍).5.(2022·重慶·西南大學(xué)附中校考三模)如圖,在平面直角坐標(biāo)系中,拋物線SKIPIF1<0與x軸交于SKIPIF1<0,B兩點(diǎn),其對(duì)稱軸SKIPIF1<0與x軸交于點(diǎn)D.圖1
圖2(1)求該拋物線的函數(shù)表達(dá)式;(2)如圖1,點(diǎn)P為第四象限內(nèi)的拋物線上一動(dòng)點(diǎn),連接PB,PC,CD,求四邊形PBDC面積的最大值和此時(shí)點(diǎn)P的坐標(biāo);(3)將該拋物線向左平移3個(gè)單位長(zhǎng)度得到拋物線y',平移后的拋物線與原拋物線的對(duì)稱軸相交于點(diǎn)E,點(diǎn)F為拋物線y'對(duì)稱軸上的一點(diǎn),M是原拋物線上的動(dòng)點(diǎn),直接寫(xiě)出所有使得以點(diǎn)A,E,F(xiàn),M為頂點(diǎn)的四邊形是平行四邊形的點(diǎn)M的坐標(biāo),并把求其中一個(gè)點(diǎn)M的坐標(biāo)的過(guò)程寫(xiě)出來(lái).【答案】(1)SKIPIF1<0;(2)SKIPIF1<0的最大值為SKIPIF1<0,此時(shí)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,SKIPIF1<0;(3)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.【思路分析】(1)運(yùn)用待定系數(shù)法即可求得答案;(2)利用待定系數(shù)法求得直線SKIPIF1<0的解析式為SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0軸交SKIPIF1<0于點(diǎn)SKIPIF1<0,如圖1,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,得出SKIPIF1<0,再運(yùn)用二次函數(shù)的性質(zhì)即可得出答案;(3)根據(jù)平移的性質(zhì)可得SKIPIF1<0,新拋物線的對(duì)稱軸為直線SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,又SKIPIF1<0,由以點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為頂點(diǎn)的四邊形是平行四邊形,分三種情況:①當(dāng)SKIPIF1<0、SKIPIF1<0為對(duì)角線時(shí),SKIPIF1<0、SKIPIF1<0的中點(diǎn)重合,②當(dāng)SKIPIF1<0、SKIPIF1<0為對(duì)角線時(shí),SKIPIF1<0、SKIPIF1<0的中點(diǎn)重合,③當(dāng)SKIPIF1<0、SKIPIF1<0為對(duì)角線時(shí),SKIPIF1<0、SKIPIF1<0的中點(diǎn)重合,分別畫(huà)出圖形,建立方程求解即可.【詳解】(1)解:(1)SKIPIF1<0拋物線SKIPIF1<0經(jīng)過(guò)點(diǎn)SKIPIF1<0,其對(duì)稱軸SKIPIF1<0,SKIPIF1<0SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0該拋物線的函數(shù)表達(dá)式為SKIPIF1<0;(2)解:如圖,連接BC,作PH∥y軸,交BC于H,SKIPIF1<0點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0關(guān)于對(duì)稱軸SKIPIF1<0對(duì)稱,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)直線SKIPIF1<0的解析式為SKIPIF1<0,則SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0的解析式為SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最大值為SKIPIF1<0,此時(shí)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,SKIPIF1<0;(3)解:將拋物線SKIPIF1<0向左平移3個(gè)單位長(zhǎng)度得到拋物線SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0新拋物線的對(duì)稱軸為直線SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0;①當(dāng)SKIPIF1<0、SKIPIF1<0為對(duì)角線時(shí),SKIPIF1<0、SKIPIF1<0的中點(diǎn)重合,SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0;②當(dāng)SKIPIF1<0、SKIPIF1<0為對(duì)角線時(shí),SKIPIF1<0、SKIPIF1<0的中點(diǎn)重合,SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0;③當(dāng)SKIPIF1<0、SKIPIF1<0為對(duì)角線時(shí),SKIPIF1<0、SKIPIF1<0的中點(diǎn)重合,SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0;綜上所述,點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.6.(2022·內(nèi)蒙古呼和浩特·統(tǒng)考三模)拋物線SKIPIF1<0與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,SKIPIF1<0,直線SKIPIF1<0與拋物線交于SKIPIF1<0,SKIPIF1<0兩點(diǎn).(1)求拋物線的解析式.(2)在此拋物線的對(duì)稱軸上是否存在一點(diǎn)SKIPIF1<0,使得SKIPIF1<0的周長(zhǎng)最???若存在,請(qǐng)求出點(diǎn)SKIPIF1<0的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.(3)若點(diǎn)SKIPIF1<0為直線SKIPIF1<0上方的拋物線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)SKIPIF1<0,SKIPIF1<0重合),將直線SKIPIF1<0上方的拋物線部分關(guān)于直線SKIPIF1<0對(duì)稱形成愛(ài)心圖案,動(dòng)點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱的點(diǎn)為SKIPIF1<0,求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)存在,SKIPIF1<0,理由見(jiàn)詳解(3)SKIPIF1<0【思路分析】(1)將SKIPIF1<0,SKIPIF1<0代入拋物線SKIPIF1<0求解即可:(2)連接BC,BC與對(duì)稱軸的交點(diǎn)即點(diǎn)P,此時(shí)SKIPIF1<0的周長(zhǎng)最?。唬?)過(guò)點(diǎn)E作SKIPIF1<0軸,進(jìn)而得到SKIPIF1<0,由三角函數(shù)即可求解;【詳解】(1)解:將SKIPIF1<0,SKIPIF1<0代入拋物線SKIPIF1<0得,SKIPIF1<0解得:SKIPIF1<0,∴拋物線的解析式為:SKIPIF1<0.(2)由SKIPIF1<0解得:SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,設(shè)BC的解析式為:SKIPIF1<0,將SKIPIF1<0,SKIPIF1<0代入SKIPIF1<0得,SKIPIF1<0解得:SKIPIF1<0,∴SKIPIF1<0,拋物線的對(duì)稱軸為:SKIPIF1<0,當(dāng)點(diǎn)P在BC上時(shí),SKIPIF1<0的周長(zhǎng)最小,∴將SKIPIF1<0代入SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0.(3)設(shè)點(diǎn)SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0可求得CD的解析式為:SKIPIF1<0,過(guò)點(diǎn)E作SKIPIF1<0軸,∴SKIPIF1<0,將SKIPIF1<0代入SKIPIF1<0得,SKIPIF1<0,將SKIPIF1<0代入SKIPIF1<0得,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0軸,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0最大,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0的取值范圍為:SKIPIF1<0.7.(2022·陜西寶雞·統(tǒng)考二模)如圖,在平面直角坐標(biāo)系中,拋物線SKIPIF1<0的圖象經(jīng)過(guò)SKIPIF1<0,SKIPIF1<0兩點(diǎn),將拋物線SKIPIF1<0向右平移2個(gè)單位得到拋物線SKIPIF1<0,平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)B.(1)求拋物線SKIPIF1<0與SKIPIF1<0的函數(shù)表達(dá)式;(2)若點(diǎn)M是拋物線SKIPIF1<0上一動(dòng)點(diǎn),點(diǎn)N是拋物線SKIPIF1<0上一動(dòng)點(diǎn),請(qǐng)問(wèn)是否存在這樣的點(diǎn)M、N,使得以A、B、M、N為頂點(diǎn)且以AB為邊的四邊形是面積為8的平行四邊形?若存在,求出點(diǎn)M、N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.【答案】(1)SKIPIF1<0;SKIPIF1<0(2)存在,SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,SKIPIF1<0【思路分析】(1)用待定系數(shù)法求出b與c的值即可;(2)先求點(diǎn)B的坐標(biāo),再根據(jù)平行四邊形的性質(zhì)進(jìn)行分類討論.【詳解】(1)解:∵SKIPIF1<0的圖象經(jīng)過(guò)SKIPIF1<0,∴SKIPIF1<0,將SKIPIF1<0代入SKIPIF1<0中,得SKIPIF1<0,解得SKIPIF1<0,∴拋物線SKIPIF1<0的函數(shù)表達(dá)式為SKIPIF1<0.∵將拋物線SKIPIF1<0向右平移2個(gè)單位得到拋物線SKIPIF1<0,∴拋物線SKIPIF1<0的函數(shù)表達(dá)式為SKIPIF1<0.(2)解:存在.理由如下:∵點(diǎn)SKIPIF1<0向右平移2個(gè)單位得到點(diǎn)B,∴SKIPIF1<0,∴SKIPIF1<0.由題意知,以AB為邊的平行四邊形的面積為8,則SKIPIF1<0,SKIPIF1<0,AB邊上的高為4.易得拋物線SKIPIF1<0的頂點(diǎn)為SKIPIF1<0,而SKIPIF1<0,∴在x軸下方不存在滿足條件的點(diǎn)M、N.在SKIPIF1<0中,令SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度醫(yī)療器械生產(chǎn)許可資質(zhì)轉(zhuǎn)讓合同3篇
- 二零二五年度金融機(jī)構(gòu)公對(duì)公匯款業(yè)務(wù)合作協(xié)議3篇
- 2025年度房地產(chǎn)公司掛靠合作經(jīng)營(yíng)管理協(xié)議3篇
- 2025年度環(huán)保技術(shù)兼職合同3篇
- 2025年度新型商業(yè)空間使用權(quán)轉(zhuǎn)讓合同3篇
- 二零二五年度競(jìng)業(yè)協(xié)議期限及競(jìng)業(yè)限制解除賠償2篇
- 二零二五年度國(guó)有企業(yè)勞動(dòng)用工合同范本3篇
- 2025年度新材料研發(fā)與應(yīng)用合伙人股權(quán)合作協(xié)議書(shū)3篇
- 2025年度留學(xué)生實(shí)習(xí)實(shí)訓(xùn)項(xiàng)目資金資助協(xié)議3篇
- 二零二五年度大米產(chǎn)業(yè)鏈品牌建設(shè)與市場(chǎng)營(yíng)銷服務(wù)合同3篇
- 農(nóng)村電商公共服務(wù)體系的建設(shè)與完善研究-以XX村為例
- 復(fù)合機(jī)器人行業(yè)分析
- 建立進(jìn)出校園安全控制與管理的方案
- 新課標(biāo)《普通高中化學(xué)課程標(biāo)準(zhǔn)(2022年版)》
- 阿里菜鳥(niǎo)裹裹云客服在線客服認(rèn)證考試及答案
- 水庫(kù)防恐反恐應(yīng)急預(yù)案
- 危險(xiǎn)化學(xué)品銷售管理臺(tái)帳
- 五輸穴及臨床應(yīng)用1
- 綠植租擺服務(wù)投標(biāo)方案(完整技術(shù)標(biāo))
- 童話知識(shí)競(jìng)賽課件
- GB/T 12574-2023噴氣燃料總酸值測(cè)定法
評(píng)論
0/150
提交評(píng)論