廣東碧桂園職業(yè)學(xué)院《SPSS技術(shù)應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
廣東碧桂園職業(yè)學(xué)院《SPSS技術(shù)應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
廣東碧桂園職業(yè)學(xué)院《SPSS技術(shù)應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫、漏寫或字跡不清者,成績(jī)按零分記?!堋狻€…………第1頁,共1頁廣東碧桂園職業(yè)學(xué)院

《SPSS技術(shù)應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共15個(gè)小題,每小題1分,共15分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、數(shù)據(jù)分析中的數(shù)據(jù)質(zhì)量評(píng)估是確保數(shù)據(jù)可靠性的關(guān)鍵步驟。假設(shè)要評(píng)估一個(gè)新收集的數(shù)據(jù)集的質(zhì)量,以下關(guān)于數(shù)據(jù)質(zhì)量評(píng)估指標(biāo)的描述,正確的是:()A.只關(guān)注數(shù)據(jù)的準(zhǔn)確性,忽略完整性和一致性B.不制定明確的評(píng)估指標(biāo)和標(biāo)準(zhǔn),主觀判斷數(shù)據(jù)質(zhì)量C.綜合考慮準(zhǔn)確性、完整性、一致性、時(shí)效性、可用性等指標(biāo),制定量化的評(píng)估標(biāo)準(zhǔn)和方法,對(duì)數(shù)據(jù)質(zhì)量進(jìn)行全面評(píng)估,并提出改進(jìn)措施D.認(rèn)為數(shù)據(jù)質(zhì)量評(píng)估是一次性的工作,不需要持續(xù)監(jiān)測(cè)和改進(jìn)2、在進(jìn)行數(shù)據(jù)分析時(shí),若要研究?jī)蓚€(gè)變量之間的線性關(guān)系,通常會(huì)使用哪種統(tǒng)計(jì)方法?()A.方差分析B.回歸分析C.因子分析D.聚類分析3、假設(shè)要分析一個(gè)項(xiàng)目的成本效益,以下關(guān)于成本效益分析方法的描述,正確的是:()A.只考慮直接成本和直接收益,忽略間接成本和潛在收益B.凈現(xiàn)值(NPV)為正數(shù)時(shí),項(xiàng)目一定可行C.內(nèi)部收益率(IRR)越高,項(xiàng)目的效益越好D.不考慮項(xiàng)目的風(fēng)險(xiǎn)和不確定性,進(jìn)行簡(jiǎn)單的成本效益計(jì)算4、關(guān)于數(shù)據(jù)分析中的客戶細(xì)分,假設(shè)要根據(jù)客戶的購買行為、人口統(tǒng)計(jì)信息和在線活動(dòng)將客戶分為不同的細(xì)分群體。以下哪種細(xì)分方法可能更能揭示客戶的潛在需求和行為模式?()A.RFM模型,基于消費(fèi)頻率、金額和最近消費(fèi)時(shí)間B.基于聚類的細(xì)分,自動(dòng)發(fā)現(xiàn)相似群體C.基于決策樹的細(xì)分,根據(jù)規(guī)則劃分D.不進(jìn)行客戶細(xì)分,對(duì)所有客戶采用相同的策略5、在數(shù)據(jù)分析的實(shí)際應(yīng)用中,模型的部署和更新是重要環(huán)節(jié)。假設(shè)你已經(jīng)建立了一個(gè)預(yù)測(cè)模型并投入使用,以下關(guān)于模型更新的策略,哪一項(xiàng)是最合理的?()A.定期重新訓(xùn)練模型,使用最新的數(shù)據(jù)B.只有當(dāng)模型性能明顯下降時(shí)才進(jìn)行更新C.從不更新模型,認(rèn)為初始模型足夠好D.隨機(jī)選擇時(shí)間更新模型6、在數(shù)據(jù)分析中,數(shù)據(jù)安全的重要性不言而喻。以下關(guān)于數(shù)據(jù)安全重要性的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)安全可以保護(hù)企業(yè)的商業(yè)機(jī)密和客戶隱私B.數(shù)據(jù)安全可以防止數(shù)據(jù)的泄露和篡改C.數(shù)據(jù)安全可以提高數(shù)據(jù)分析的結(jié)果的準(zhǔn)確性和可靠性D.數(shù)據(jù)安全只需要關(guān)注數(shù)據(jù)的存儲(chǔ)和傳輸過程,無需考慮數(shù)據(jù)分析的過程7、對(duì)于一個(gè)包含大量文本和數(shù)值混合數(shù)據(jù)的數(shù)據(jù)集,以下哪種預(yù)處理方法較為常見?()A.文本向量化B.數(shù)值標(biāo)準(zhǔn)化C.特征工程D.以上都是8、在數(shù)據(jù)分析中,模型的可解釋性對(duì)于理解和信任模型結(jié)果很重要。假設(shè)你建立了一個(gè)復(fù)雜的機(jī)器學(xué)習(xí)模型,以下關(guān)于提高模型可解釋性的方法,哪一項(xiàng)是最有效的?()A.使用黑盒模型,不關(guān)注可解釋性B.繪制模型的決策樹,直觀展示決策過程C.只關(guān)注模型的預(yù)測(cè)準(zhǔn)確率,不考慮解釋性D.對(duì)模型的內(nèi)部工作原理不做任何解釋,讓用戶自行理解9、數(shù)據(jù)挖掘在發(fā)現(xiàn)隱藏模式和知識(shí)方面發(fā)揮著重要作用。假設(shè)要從大量銷售數(shù)據(jù)中挖掘潛在的客戶購買模式,以下關(guān)于數(shù)據(jù)挖掘技術(shù)選擇的描述,正確的是:()A.僅使用關(guān)聯(lián)規(guī)則挖掘,不考慮其他技術(shù)B.盲目應(yīng)用所有的數(shù)據(jù)挖掘算法,不考慮數(shù)據(jù)特點(diǎn)和業(yè)務(wù)需求C.結(jié)合聚類分析、分類算法和關(guān)聯(lián)規(guī)則挖掘等技術(shù),根據(jù)數(shù)據(jù)特點(diǎn)和問題需求選擇合適的方法D.認(rèn)為數(shù)據(jù)挖掘結(jié)果一定準(zhǔn)確,無需進(jìn)一步驗(yàn)證和解釋10、在數(shù)據(jù)分析中,探索性數(shù)據(jù)分析(EDA)可以幫助我們初步了解數(shù)據(jù)的特征。假設(shè)你剛剛獲得一個(gè)新的數(shù)據(jù)集,以下關(guān)于EDA的步驟,哪一項(xiàng)是最應(yīng)該首先進(jìn)行的?()A.繪制數(shù)據(jù)的直方圖和箱線圖B.計(jì)算數(shù)據(jù)的基本統(tǒng)計(jì)量,如均值、中位數(shù)等C.檢查數(shù)據(jù)的缺失值和異常值D.對(duì)數(shù)據(jù)進(jìn)行聚類分析11、數(shù)據(jù)分析中的回歸分析用于建立變量之間的定量關(guān)系。假設(shè)要建立一個(gè)線性回歸模型來預(yù)測(cè)氣溫對(duì)空調(diào)銷量的影響。如果模型的殘差呈現(xiàn)出明顯的非線性模式,可能表明什么?()A.應(yīng)該使用非線性回歸模型來改進(jìn)預(yù)測(cè)效果B.數(shù)據(jù)中存在異常值,需要進(jìn)行處理C.模型的擬合效果很好,無需進(jìn)一步改進(jìn)D.收集的數(shù)據(jù)不足以進(jìn)行有效的分析12、在進(jìn)行數(shù)據(jù)分析時(shí),需要對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理。標(biāo)準(zhǔn)化處理的主要目的是?()A.消除量綱的影響B(tài).使數(shù)據(jù)符合正態(tài)分布C.減少數(shù)據(jù)的誤差D.提高數(shù)據(jù)的準(zhǔn)確性13、在進(jìn)行數(shù)據(jù)分析時(shí),可能需要對(duì)多個(gè)數(shù)據(jù)集進(jìn)行合并和整合。假設(shè)你有來自不同部門的銷售數(shù)據(jù)和客戶數(shù)據(jù),以下關(guān)于數(shù)據(jù)合并的注意事項(xiàng),哪一項(xiàng)是最關(guān)鍵的?()A.確保數(shù)據(jù)的格式和字段名稱一致,便于合并B.不考慮數(shù)據(jù)的重復(fù)和沖突,直接合并C.只合并部分重要的數(shù)據(jù)字段,忽略其他D.隨意選擇合并的順序和方式14、在數(shù)據(jù)分析中,數(shù)據(jù)的歸一化和標(biāo)準(zhǔn)化是常見的操作。假設(shè)你有一個(gè)包含不同量綱特征的數(shù)據(jù)集,以下關(guān)于這兩種操作的作用,哪一項(xiàng)是最關(guān)鍵的?()A.使數(shù)據(jù)符合正態(tài)分布,便于進(jìn)行統(tǒng)計(jì)分析B.消除特征之間的量綱差異,使不同特征具有可比性C.增加數(shù)據(jù)的多樣性和復(fù)雜性D.沒有實(shí)際作用,可以忽略15、在數(shù)據(jù)分析中的關(guān)聯(lián)規(guī)則挖掘中,以下關(guān)于支持度和置信度的說法,錯(cuò)誤的是()A.支持度表示項(xiàng)集在數(shù)據(jù)集中出現(xiàn)的頻率,用于衡量規(guī)則的普遍性B.置信度表示在包含前提條件的事務(wù)中同時(shí)包含結(jié)論的概率,用于衡量規(guī)則的可靠性C.通常情況下,支持度和置信度越高,關(guān)聯(lián)規(guī)則越有價(jià)值D.只關(guān)注支持度或置信度其中一個(gè)指標(biāo)就可以確定有效的關(guān)聯(lián)規(guī)則,另一個(gè)指標(biāo)可以忽略二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)簡(jiǎn)述數(shù)據(jù)挖掘中的社交網(wǎng)絡(luò)分析,包括中心性分析、社區(qū)發(fā)現(xiàn)等,說明其在社交平臺(tái)和企業(yè)中的應(yīng)用。2、(本題5分)闡述數(shù)據(jù)分析師在處理大規(guī)模數(shù)據(jù)時(shí)應(yīng)注意的問題,包括內(nèi)存管理、計(jì)算效率等,并介紹一些優(yōu)化技巧。3、(本題5分)簡(jiǎn)述數(shù)據(jù)可視化中的地圖可視化,包括地理信息系統(tǒng)(GIS)的應(yīng)用、熱力圖等,說明其在數(shù)據(jù)分析中的作用。4、(本題5分)在數(shù)據(jù)倉庫中,如何進(jìn)行數(shù)據(jù)的ETL(Extract,Transform,Load)過程設(shè)計(jì)和優(yōu)化?請(qǐng)說明ETL的流程和關(guān)鍵步驟,并舉例說明。三、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)教育領(lǐng)域逐漸重視數(shù)據(jù)分析在個(gè)性化學(xué)習(xí)和教學(xué)質(zhì)量提升方面的應(yīng)用。請(qǐng)論述如何利用學(xué)生的學(xué)習(xí)數(shù)據(jù)進(jìn)行學(xué)習(xí)行為分析、成績(jī)預(yù)測(cè)和個(gè)性化課程推薦,研究數(shù)據(jù)分析在教育領(lǐng)域的潛力和限制,以及如何保障數(shù)據(jù)的安全性和學(xué)生的隱私。2、(本題5分)在人力資源管理中,數(shù)據(jù)分析可以幫助企業(yè)優(yōu)化招聘流程、員工績(jī)效評(píng)估和人才發(fā)展規(guī)劃。請(qǐng)?jiān)敿?xì)論述如何利用數(shù)據(jù)分析進(jìn)行人才需求預(yù)測(cè)、員工離職風(fēng)險(xiǎn)評(píng)估和培訓(xùn)效果評(píng)估,探討數(shù)據(jù)分析在人力資源領(lǐng)域的創(chuàng)新應(yīng)用和潛在的倫理問題。3、(本題5分)社交媒體輿論監(jiān)測(cè)和引導(dǎo)需要有效的數(shù)據(jù)分析支持。請(qǐng)?jiān)敿?xì)闡述如何通過數(shù)據(jù)分析來及時(shí)發(fā)現(xiàn)熱點(diǎn)話題、掌握輿論走向和進(jìn)行正面引導(dǎo),同時(shí)避免虛假信息和惡意言論的傳播,維護(hù)網(wǎng)絡(luò)輿論環(huán)境的健康和穩(wěn)定。4、(本題5分)探討在電商平臺(tái)的商品定價(jià)策略中,如何運(yùn)用數(shù)據(jù)分析考慮成本、市場(chǎng)需求、競(jìng)爭(zhēng)對(duì)手價(jià)格等因素,制定合理的商品價(jià)格。5、(本題5分)在電信行業(yè),用戶通話記錄、網(wǎng)絡(luò)流量數(shù)據(jù)等大量存在。探討如何利用數(shù)據(jù)分析方法,比如客戶流失預(yù)測(cè)、網(wǎng)絡(luò)優(yōu)化等,提高電信服務(wù)質(zhì)量,增強(qiáng)用戶粘性,同時(shí)研究在數(shù)據(jù)隱私保護(hù)法規(guī)嚴(yán)格和技術(shù)更新?lián)Q代快方面所面臨的困難及解決途徑。四、案例分析題(本大題共4個(gè)小題,共40分)1、(本題10分)某在線招聘平臺(tái)保存了不同行業(yè)職位的招聘需求變化、求職者技能匹配度、面試成功率等。研究怎樣借助這些數(shù)據(jù)提升招聘服務(wù)質(zhì)量和行業(yè)趨勢(shì)分析。2、(本

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論