版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
裝訂線裝訂線PAGE2第1頁,共3頁廊坊燕京職業(yè)技術學院
《文字與標志設計》2023-2024學年第一學期期末試卷院(系)_______班級_______學號_______姓名_______題號一二三四總分得分一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、圖像去模糊是計算機視覺中的一個難題。假設一張圖像由于相機抖動而產(chǎn)生模糊,以下哪種去模糊方法可能需要對模糊核有較為準確的估計?()A.基于深度學習的去模糊方法B.盲去卷積方法C.維納濾波去模糊方法D.均值濾波去模糊方法2、在計算機視覺的圖像分類任務中,假設數(shù)據(jù)集存在類別不平衡問題,某些類別的樣本數(shù)量遠遠少于其他類別。以下哪種方法可以緩解這種不平衡對分類模型的影響?()A.對少數(shù)類進行過采樣或對多數(shù)類進行欠采樣B.只使用多數(shù)類的樣本進行訓練C.不考慮類別不平衡,直接訓練模型D.隨機選擇樣本進行訓練3、在計算機視覺的圖像超分辨率任務中,假設要將一張低分辨率圖像恢復為高分辨率圖像。以下關于圖像超分辨率方法的描述,正確的是:()A.基于插值的方法簡單快速,但恢復出的圖像細節(jié)不夠清晰B.基于深度學習的方法能夠生成逼真的高分辨率圖像,但需要大量的訓練數(shù)據(jù)和計算資源C.圖像超分辨率技術可以無限制地提高圖像的分辨率,不受硬件限制D.所有的圖像超分辨率方法都能夠完全恢復出原始高分辨率圖像的所有信息4、在計算機視覺的圖像超分辨率重建中,假設我們要將低分辨率的圖像重建為高分辨率圖像,同時保持圖像的細節(jié)和紋理。以下哪種深度學習架構可能在這方面表現(xiàn)較好?()A.卷積神經(jīng)網(wǎng)絡(CNN)B.循環(huán)神經(jīng)網(wǎng)絡(RNN)C.生成對抗網(wǎng)絡(GAN)D.自動編碼器(Autoencoder)5、在計算機視覺的場景理解任務中,假設要理解一個室內(nèi)場景的布局和功能,例如判斷是辦公室還是客廳。以下哪種信息對于準確理解場景是至關重要的?()A.物體的類別和位置B.圖像的顏色分布C.圖像的拍攝角度D.隨機選擇圖像中的部分區(qū)域進行分析6、在計算機視覺的圖像超分辨率重建中,提高低分辨率圖像的清晰度。假設要將一張模糊的圖像重建為清晰的高分辨率圖像,以下關于圖像超分辨率重建方法的描述,哪一項是不正確的?()A.基于插值的方法通過在像素之間插入新的值來增加圖像的分辨率,但可能會導致圖像模糊B.基于深度學習的方法能夠學習低分辨率圖像和高分辨率圖像之間的映射關系,重建出更清晰的圖像C.圖像超分辨率重建可以無限制地提高圖像的分辨率,不受原始圖像信息的限制D.為了獲得更好的重建效果,可以結合多種超分辨率重建方法或使用先驗知識7、在計算機視覺中,特征提取是非常關鍵的一步。假設我們要從圖像中提取有意義的特征,用于后續(xù)的處理和分析,以下關于特征提取方法的描述,哪一項是不正確的?()A.SIFT(尺度不變特征變換)和SURF(加速穩(wěn)健特征)是常用的局部特征描述子,對圖像的旋轉、縮放和光照變化具有一定的不變性B.HOG(方向梯度直方圖)特征通過計算圖像局部區(qū)域的梯度方向分布來描述圖像,常用于行人檢測C.深度學習中的自動特征提取,例如通過卷積神經(jīng)網(wǎng)絡學習到的特征,比手工設計的特征更具有代表性和判別力D.特征提取的結果對后續(xù)的圖像處理任務影響不大,不同的特征提取方法可以得到相似的處理效果8、計算機視覺中的視覺跟蹤算法常用于跟蹤運動目標。假設要跟蹤一只在森林中奔跑的動物,以下關于視覺跟蹤算法的描述,哪一項是不正確的?()A.基于模型的跟蹤算法通過建立目標的模型來預測其位置和狀態(tài)B.基于特征的跟蹤算法依賴于目標的顯著特征進行跟蹤C.視覺跟蹤算法在目標發(fā)生快速變形或完全遮擋時仍能保持準確跟蹤D.結合多種線索和信息的融合跟蹤算法可以提高跟蹤的穩(wěn)定性和可靠性9、在計算機視覺的姿態(tài)估計任務中,假設要估計一個物體在三維空間中的姿態(tài),例如估計一個機器人手臂的關節(jié)角度。以下哪種技術或方法可能被用于實現(xiàn)這一目標?()A.基于立體視覺的方法,通過多個相機的觀測B.利用深度學習模型直接預測姿態(tài)參數(shù)C.僅根據(jù)物體的外觀形狀進行估計D.隨機猜測物體的姿態(tài)10、當利用計算機視覺進行圖像去模糊任務,恢復清晰的圖像,以下哪種先驗知識或約束可能有助于解決這個問題?()A.自然圖像的梯度稀疏性B.圖像的低頻成分C.圖像的邊緣信息D.以上都是11、當處理低光照條件下拍攝的圖像時,為了增強圖像的亮度和對比度,同時減少噪聲,以下哪種圖像處理方法可能更合適?()A.直方圖均衡化B.伽馬校正C.簡單地增加圖像的整體亮度值D.不進行任何處理,保留低光照效果12、在計算機視覺的姿態(tài)估計任務中,需要確定物體在三維空間中的方向和位置。假設我們要估計一個機器人手臂的姿態(tài),以下哪種技術通常被用于獲取準確的姿態(tài)信息?()A.基于視覺標記的姿態(tài)估計B.基于深度學習的姿態(tài)估計C.基于幾何約束的姿態(tài)估計D.基于慣性測量單元(IMU)的姿態(tài)估計13、在計算機視覺的視頻監(jiān)控系統(tǒng)中,異常事件檢測是重要功能之一。假設要在一個倉庫的監(jiān)控視頻中檢測出異常的人員活動或物品移動。以下哪種異常事件檢測方法在處理這種大規(guī)模視頻數(shù)據(jù)時能夠更有效地發(fā)現(xiàn)異常?()A.基于規(guī)則的檢測B.基于統(tǒng)計模型的檢測C.基于深度學習的檢測D.基于人工觀察的檢測14、圖像分類是計算機視覺中的常見任務之一。對于圖像分類模型的訓練,以下說法錯誤的是()A.需要大量有標注的圖像數(shù)據(jù)來學習不同類別的特征B.卷積神經(jīng)網(wǎng)絡(CNN)在圖像分類任務中表現(xiàn)出色C.模型的訓練過程是不斷調(diào)整參數(shù)以最小化預測誤差的過程D.圖像分類模型一旦訓練完成,就無法再對新的類別進行學習和分類15、圖像分類是計算機視覺的基礎任務之一。假設要對大量的自然風景圖片進行分類,包括山脈、森林、海灘等不同類型,同時圖片可能存在不同的拍攝角度、光照條件和季節(jié)變化。為了能夠準確地對這些圖片進行分類,以下哪種特征提取方法與分類算法的組合最為有效?()A.SIFT特征+支持向量機B.HOG特征+決策樹C.卷積神經(jīng)網(wǎng)絡自動提取特征+深度學習分類器D.顏色直方圖特征+樸素貝葉斯二、簡答題(本大題共4個小題,共20分)1、(本題5分)說明計算機視覺在地震監(jiān)測中的作用。2、(本題5分)描述計算機視覺在地質(zhì)勘探中的應用。3、(本題5分)說明計算機視覺在手術導航中的應用。4、(本題5分)解釋計算機視覺在典當行業(yè)中的作用。三、應用題(本大題共5個小題,共25分)1、(本題5分)使用目標跟蹤算法,對游泳比賽中的運動員轉身動作進行分析和評估。2、(本題5分)對體育賽事的視頻進行慢動作分析,輔助裁判做出準確判罰。3、(本題5分)基于深度學習的圖像生成模型,生成具有特定風格的藝術圖像。4、(本題5分)利用深度學習算法,對不同種類的肉干圖像進行分類。5、(本題5分)利用圖像增強技術,提升霧霾天氣下拍攝圖像的清晰度。四、分析題(本大題共4個小題,共40分)1、(本題10分)剖析某電視劇的粉絲見面會活動海報設計,討論其如何通過視覺元素吸引粉絲參加見面會。2、(本題10分)分析某美容院的男士護理系列宣傳物料設計,探討其男性特色、護理項目
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024物流配送員勞動協(xié)議3篇
- 2024版網(wǎng)絡游戲開發(fā)與運營權轉讓合同2篇
- 2024押證不押車商業(yè)地產(chǎn)項目貸款合同范本9篇
- 2025年度建筑安全評價與施工監(jiān)理一體化合同范本3篇
- 2025廠區(qū)食堂承包合同:廠區(qū)文化建設與餐飲服務融合協(xié)議3篇
- 二零二五版北京市金融行業(yè)勞動合同法實施標準2篇
- 2024離婚財產(chǎn)分割保險保障合同
- 2024施工現(xiàn)場環(huán)境信息公開與共享協(xié)議3篇
- 2025年MLB棒球帽定制加工及品牌合作框架協(xié)議3篇
- 2025年度智能制造生產(chǎn)線操作工勞動合同3篇 - 副本
- 2024版?zhèn)€人私有房屋購買合同
- 2025年山東光明電力服務公司招聘筆試參考題庫含答案解析
- 《神經(jīng)發(fā)展障礙 兒童社交溝通障礙康復規(guī)范》
- 2025年中建六局二級子企業(yè)總經(jīng)理崗位公開招聘高頻重點提升(共500題)附帶答案詳解
- 2024年5月江蘇省事業(yè)單位招聘考試【綜合知識與能力素質(zhì)】真題及答案解析(管理類和其他類)
- 注漿工安全技術措施
- 《食品與食品》課件
- 2024年世界職業(yè)院校技能大賽“食品安全與質(zhì)量檢測組”參考試題庫(含答案)
- 讀書分享會《白夜行》
- 2023上海高考英語詞匯手冊單詞背誦默寫表格(復習必背)
- 人民軍隊歷史與優(yōu)良傳統(tǒng)(2024)學習通超星期末考試答案章節(jié)答案2024年
評論
0/150
提交評論