![北京體育職業(yè)學院《人工智能導引與程序設計》2023-2024學年第二學期期末試卷_第1頁](http://file4.renrendoc.com/view10/M01/23/27/wKhkGWepfWWAF68UAAK-eVxeBdw438.jpg)
![北京體育職業(yè)學院《人工智能導引與程序設計》2023-2024學年第二學期期末試卷_第2頁](http://file4.renrendoc.com/view10/M01/23/27/wKhkGWepfWWAF68UAAK-eVxeBdw4382.jpg)
![北京體育職業(yè)學院《人工智能導引與程序設計》2023-2024學年第二學期期末試卷_第3頁](http://file4.renrendoc.com/view10/M01/23/27/wKhkGWepfWWAF68UAAK-eVxeBdw4383.jpg)
![北京體育職業(yè)學院《人工智能導引與程序設計》2023-2024學年第二學期期末試卷_第4頁](http://file4.renrendoc.com/view10/M01/23/27/wKhkGWepfWWAF68UAAK-eVxeBdw4384.jpg)
![北京體育職業(yè)學院《人工智能導引與程序設計》2023-2024學年第二學期期末試卷_第5頁](http://file4.renrendoc.com/view10/M01/23/27/wKhkGWepfWWAF68UAAK-eVxeBdw4385.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內…………不…………要…………答…………題…………第1頁,共3頁北京體育職業(yè)學院《人工智能導引與程序設計》
2023-2024學年第二學期期末試卷題號一二三四總分得分一、單選題(本大題共20個小題,每小題1分,共20分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在人工智能的發(fā)展過程中,倫理和社會問題日益受到關注。以下關于人工智能倫理問題的描述,不正確的是()A.人工智能可能導致就業(yè)結構的變化,一些工作可能被自動化取代,從而引發(fā)社會就業(yè)問題B.人工智能在決策過程中可能存在偏見和不公平,例如在信用評估、招聘等領域C.隨著人工智能技術的發(fā)展,個人隱私保護面臨更大的挑戰(zhàn),因為大量的數(shù)據(jù)被收集和分析D.人工智能倫理問題不重要,技術的發(fā)展應該優(yōu)先于倫理和社會問題的考慮2、人工智能中的聯(lián)邦學習技術旨在保護數(shù)據(jù)隱私的同時實現(xiàn)模型的協(xié)同訓練。假設多個機構擁有各自的私有數(shù)據(jù),需要共同訓練一個模型。以下哪種聯(lián)邦學習算法或框架在處理數(shù)據(jù)異構和通信效率方面表現(xiàn)更為優(yōu)秀?()A.橫向聯(lián)邦學習B.縱向聯(lián)邦學習C.聯(lián)邦遷移學習D.以上框架根據(jù)具體情況選擇3、在人工智能的異常檢測任務中,例如檢測網絡中的異常流量或金融交易中的欺詐行為。假設正常數(shù)據(jù)的模式較為復雜,而異常數(shù)據(jù)相對較少且具有多樣性。以下哪種方法在這種情況下更適合進行異常檢測?()A.基于統(tǒng)計的方法,設定閾值判斷異常B.無監(jiān)督學習方法,自動發(fā)現(xiàn)異常模式C.監(jiān)督學習方法,使用有標注的異常數(shù)據(jù)進行訓練D.人工檢查所有數(shù)據(jù),識別異常4、在人工智能的文本摘要生成中,以下哪種方法可能導致生成的摘要與原文主題偏離?()A.過度依賴原文中的高頻詞匯B.未能理解原文的語義結構C.忽略原文中的關鍵信息D.以上都有可能5、在人工智能的發(fā)展中,算力的需求不斷增長。假設要訓練一個大型的人工智能模型,以下關于算力的描述,正確的是:()A.普通的個人電腦就能夠滿足訓練大型人工智能模型的算力需求B.算力的提升主要依賴硬件的改進,軟件優(yōu)化的作用不大C.云計算平臺可以提供強大的算力支持,幫助研究人員和企業(yè)訓練復雜的人工智能模型D.算力的增長對人工智能模型的性能提升沒有實質性的幫助6、人工智能在自動駕駛領域有重要的應用。假設一輛自動駕駛汽車在行駛過程中需要做出決策,以下關于自動駕駛中的人工智能決策的描述,正確的是:()A.自動駕駛汽車的決策完全依賴于預先設定的規(guī)則和算法,不具備自主學習和適應能力B.復雜的交通環(huán)境和意外情況不會對自動駕駛汽車的決策造成困難,因為其具有完美的感知和預測能力C.自動駕駛汽車在決策時需要綜合考慮多種因素,如交通規(guī)則、行人行為和車輛狀態(tài)等D.人類駕駛員的干預對自動駕駛汽車的決策沒有任何幫助,反而可能導致系統(tǒng)混亂7、人工智能中的深度學習模型通常需要大量的訓練數(shù)據(jù)。假設要訓練一個用于圖像分類的卷積神經網絡(CNN),但可用的標注數(shù)據(jù)有限。以下哪種方法可能有助于提高模型的性能?()A.使用數(shù)據(jù)增強技術,如翻轉、旋轉、縮放圖像,增加數(shù)據(jù)的多樣性B.減少模型的層數(shù)和參數(shù)數(shù)量,以降低對數(shù)據(jù)的需求C.直接使用未標注的數(shù)據(jù)進行訓練D.放棄深度學習模型,選擇傳統(tǒng)的機器學習算法8、在人工智能的發(fā)展中,數(shù)據(jù)的質量和數(shù)量對模型的訓練和性能有著重要的影響。以下關于數(shù)據(jù)在人工智能中的作用的描述,不正確的是()A.高質量、大規(guī)模的數(shù)據(jù)能夠幫助模型學習到更準確和通用的模式B.數(shù)據(jù)清洗和預處理是提高數(shù)據(jù)質量的重要步驟,可以減少噪聲和錯誤C.即使數(shù)據(jù)量較少,通過巧妙的算法設計和模型架構,也能訓練出性能優(yōu)異的人工智能模型D.數(shù)據(jù)的標注工作對于監(jiān)督學習非常重要,準確的標注能夠提高模型的學習效果9、人工智能在醫(yī)療領域的應用具有巨大的潛力,但也面臨著數(shù)據(jù)隱私和安全性的挑戰(zhàn)。假設一個醫(yī)療機構要使用人工智能技術分析患者的醫(yī)療數(shù)據(jù)來輔助診斷疾病,同時要確保患者數(shù)據(jù)不被泄露和濫用。以下哪種技術或方法在保障數(shù)據(jù)安全和隱私方面最為有效?()A.數(shù)據(jù)加密B.數(shù)據(jù)脫敏C.建立嚴格的訪問控制機制D.以上方法綜合運用10、人工智能中的智能客服可以回答用戶的各種問題。假設我們要評估一個智能客服的性能,以下關于評估指標的說法,哪一項是不正確的?()A.回答的準確性B.響應的速度C.語言的優(yōu)美程度D.能夠解決問題的復雜程度11、在人工智能的知識圖譜構建中,需要整合大量的結構化和非結構化數(shù)據(jù)。假設要為一個特定領域構建知識圖譜,以下關于數(shù)據(jù)來源的選擇,哪一項是最關鍵的?()A.只選擇權威的學術文獻和研究報告,確保知識的準確性B.廣泛收集互聯(lián)網上的各種信息,包括社交媒體和博客等C.結合行業(yè)專家的經驗和知識,以及相關的數(shù)據(jù)庫和文檔D.隨機選擇一些數(shù)據(jù)來源,不進行篩選和評估12、人工智能中的機器翻譯是一項具有挑戰(zhàn)性的任務。假設我們要將一段中文文本翻譯成英文,以下關于機器翻譯的挑戰(zhàn),哪一項是不正確的?()A.詞匯的多義性B.語法結構的差異C.文化背景的不同D.機器翻譯的質量已經超越了人類翻譯13、人工智能中的強化學習算法在機器人足球比賽中可以訓練機器人球員的策略。假設要讓機器人球隊在比賽中取得更好的成績,以下哪個方面是強化學習算法需要重點優(yōu)化的?()A.球員的動作控制B.團隊的協(xié)作策略C.球場環(huán)境的建模D.對手行為的預測14、人工智能中的智能監(jiān)控系統(tǒng)在安防、交通等領域發(fā)揮著重要作用。假設我們要在一個大型商場部署智能監(jiān)控系統(tǒng),以下關于智能監(jiān)控的功能,哪一項是不準確的?()A.實時檢測異常行為B.自動識別人員身份C.預測潛在的安全威脅D.智能監(jiān)控系統(tǒng)不需要考慮隱私保護問題15、在人工智能的應用中,自動駕駛是一個具有挑戰(zhàn)性的領域。假設一輛自動駕駛汽車需要在復雜的交通環(huán)境中做出安全、高效的駕駛決策。那么,以下關于自動駕駛中的人工智能技術,哪一項是不準確的?()A.需要依靠多種傳感器獲取環(huán)境信息,如攝像頭、激光雷達等B.基于深度學習的目標檢測算法可以準確識別道路上的行人和車輛C.自動駕駛系統(tǒng)一旦訓練完成,就不需要再進行更新和改進D.決策算法需要考慮交通規(guī)則、道德倫理等多方面因素16、在人工智能的語音識別領域,假設要開發(fā)一個能夠準確識別不同口音和背景噪聲下的語音識別系統(tǒng),以下關于語音識別技術的描述,正確的是:()A.語音識別系統(tǒng)只需要對清晰、標準的語音進行訓練,就能應對各種復雜情況B.增加訓練數(shù)據(jù)中的口音和噪聲樣本可以提高系統(tǒng)在復雜環(huán)境下的識別能力C.語音識別的準確率只取決于聲學模型,與語言模型無關D.現(xiàn)有的語音識別技術已經能夠達到100%的準確率,無需進一步改進17、在人工智能的模型訓練中,超參數(shù)的調整是一個關鍵步驟。假設正在訓練一個用于文本生成的循環(huán)神經網絡(RNN),以下關于超參數(shù)選擇的方法,哪一項是不太可取的?()A.基于經驗和直覺,隨機選擇一組超參數(shù)進行試驗B.使用網格搜索或隨機搜索等方法,系統(tǒng)地嘗試不同的超參數(shù)組合C.借鑒已有的相關研究和實踐中常用的超參數(shù)設置D.利用自動超參數(shù)調整工具,如Hyperopt,根據(jù)驗證集的性能自動尋找最優(yōu)超參數(shù)18、人工智能中的無監(jiān)督學習可以發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式和結構。以下關于無監(jiān)督學習的描述,不正確的是()A.聚類分析和主成分分析是常見的無監(jiān)督學習方法B.無監(jiān)督學習不需要事先標注數(shù)據(jù),能夠自動從數(shù)據(jù)中學習特征C.無監(jiān)督學習的結果通常難以解釋和評估,應用范圍相對較窄D.可以用于數(shù)據(jù)預處理、特征提取和異常檢測等任務19、人工智能中的聯(lián)邦學習技術旨在保護數(shù)據(jù)隱私的同時實現(xiàn)模型訓練。假設多個機構想要聯(lián)合訓練一個人工智能模型,同時保護各自的數(shù)據(jù)隱私,以下關于聯(lián)邦學習的描述,正確的是:()A.聯(lián)邦學習可以在不共享原始數(shù)據(jù)的情況下,直接合并各機構的模型參數(shù)進行訓練B.聯(lián)邦學習過程中不存在通信開銷和安全風險C.采用加密技術和模型參數(shù)交換的方式,聯(lián)邦學習能夠在保護數(shù)據(jù)隱私的前提下協(xié)同訓練模型D.聯(lián)邦學習只適用于小規(guī)模的數(shù)據(jù)和簡單的模型,對于大規(guī)模和復雜的任務不適用20、人工智能在物流配送中的路徑規(guī)劃方面具有應用潛力。假設要為快遞配送車輛規(guī)劃最優(yōu)路徑,以下關于其應用的描述,哪一項是不準確的?()A.考慮交通狀況、貨物重量和配送時間等因素,優(yōu)化路徑選擇B.利用啟發(fā)式算法可以在較短時間內找到近似最優(yōu)的配送路徑C.人工智能規(guī)劃的路徑一定是最短的,不會受到任何突發(fā)情況的影響D.實時更新路況信息,動態(tài)調整配送路徑,提高配送效率二、簡答題(本大題共5個小題,共25分)1、(本題5分)談談支持向量機算法的優(yōu)勢。2、(本題5分)解釋人工智能在氣候變化研究中的應用。3、(本題5分)簡述人工智能在軍事領域的應用和風險。4、(本題5分)解釋人工智能發(fā)展帶來的教育變革。5、(本題5分)解釋生成對抗網絡的原理和用途。三、案例分析題(本大題共5個小題,共25分)1、(本題5分)以某智能招聘系統(tǒng)為例,研究人工智能在人才篩選和匹配中的應用。2、(本題5分)剖析一個利用人工智能進行城市規(guī)劃的案例,包括數(shù)據(jù)分析和方案生成。3、(本題5分)分析一個利用人工智能進行智能書法材料選擇與成本控制系統(tǒng),探討其如何選擇合適的書法材料并控制成本。4、(本題5分)分析一個基于人工智能的民間藝術傳承人口述歷史整理系統(tǒng),評估其整理效果和歷史價值。5、(本題5分)剖析某智能橋梁健康監(jiān)測系統(tǒng)中人工智能的數(shù)據(jù)采集和結構安全評估能力。四、操作題(本大題共3個小題,共30分)1、(本題10分)運用Python的TensorFlow框架,構建一個生成對抗網絡(GAN),用于生成手寫數(shù)字圖像。設計合適的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年新版房產代理合同范例
- 2025至2030年中國鍋爐煙氣脫流除塵器數(shù)據(jù)監(jiān)測研究報告
- 扭矩倍增器行業(yè)深度研究報告
- 2021-2026年中國植入式助聽器行業(yè)市場全景調研及投資規(guī)劃建議報告
- 醫(yī)療救助協(xié)議合同范例
- 2025年度城市公共服務設施用地國有土地使用權合同
- 低房價陰陽合同范例
- 勞務合同范本責任約定
- 書畫居間合同范例
- 公司并購公司合同范本
- 杭州市淳安縣國有企業(yè)招聘筆試真題2024
- 2024政府采購評審專家考試真題庫及答案
- 2025年道路貨運駕駛員從業(yè)資格證模擬考試題
- 數(shù)學-安徽省皖南八校2025屆高三上學期12月第二次大聯(lián)考試題和答案
- 退市新規(guī)解讀-上海證券交易所、大同證券
- 融資報告范文模板
- 桃李面包盈利能力探析案例11000字
- GB/Z 30966.71-2024風能發(fā)電系統(tǒng)風力發(fā)電場監(jiān)控系統(tǒng)通信第71部分:配置描述語言
- 腦梗死的護理查房
- 2025高考數(shù)學專項復習:概率與統(tǒng)計的綜合應用(十八大題型)含答案
- 2024-2030年中國紫蘇市場深度局勢分析及未來5發(fā)展趨勢報告
評論
0/150
提交評論