黔南民族師范學(xué)院《深度學(xué)習(xí)》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁(yè)
黔南民族師范學(xué)院《深度學(xué)習(xí)》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁(yè)
黔南民族師范學(xué)院《深度學(xué)習(xí)》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁(yè)
黔南民族師范學(xué)院《深度學(xué)習(xí)》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

站名:站名:年級(jí)專(zhuān)業(yè):姓名:學(xué)號(hào):凡年級(jí)專(zhuān)業(yè)、姓名、學(xué)號(hào)錯(cuò)寫(xiě)、漏寫(xiě)或字跡不清者,成績(jī)按零分記。…………密………………封………………線(xiàn)…………第1頁(yè),共1頁(yè)黔南民族師范學(xué)院《深度學(xué)習(xí)》

2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、人工智能是當(dāng)前科技領(lǐng)域的熱門(mén)話(huà)題,其應(yīng)用涵蓋了眾多領(lǐng)域。以下關(guān)于人工智能的定義,不準(zhǔn)確的是()A.人工智能是研究、開(kāi)發(fā)用于模擬、延伸和擴(kuò)展人的智能的理論、方法、技術(shù)及應(yīng)用系統(tǒng)的一門(mén)新的技術(shù)科學(xué)B.人工智能是指讓計(jì)算機(jī)像人類(lèi)一樣思考和行動(dòng),能夠自主地解決各種復(fù)雜問(wèn)題C.人工智能僅僅是通過(guò)大量的數(shù)據(jù)訓(xùn)練來(lái)實(shí)現(xiàn)對(duì)特定任務(wù)的預(yù)測(cè)和決策,不涉及對(duì)智能本質(zhì)的探索D.人工智能旨在創(chuàng)造出能夠感知環(huán)境、學(xué)習(xí)知識(shí)、進(jìn)行推理和決策,并能夠與人類(lèi)進(jìn)行交互的智能體2、人工智能中的自動(dòng)規(guī)劃和調(diào)度問(wèn)題在許多領(lǐng)域都有應(yīng)用,如生產(chǎn)制造、物流配送等。假設(shè)一個(gè)工廠要安排生產(chǎn)任務(wù),需要考慮機(jī)器的可用性、訂單的優(yōu)先級(jí)和交貨日期等約束條件。以下哪種自動(dòng)規(guī)劃算法在處理這種復(fù)雜的約束滿(mǎn)足問(wèn)題上最為高效?()A.A*算法B.遺傳算法C.模擬退火算法D.蟻群算法3、人工智能在智能客服領(lǐng)域的應(yīng)用越來(lái)越廣泛。假設(shè)要構(gòu)建一個(gè)能夠回答用戶(hù)各種問(wèn)題的智能客服系統(tǒng),需要考慮以下幾個(gè)方面。以下關(guān)于提高回答準(zhǔn)確性的方法,哪一項(xiàng)是最重要的?()A.建立一個(gè)龐大的知識(shí)庫(kù),涵蓋各種常見(jiàn)問(wèn)題和答案B.運(yùn)用自然語(yǔ)言生成技術(shù),生成更加自然流暢的回答C.不斷收集用戶(hù)的反饋,對(duì)系統(tǒng)進(jìn)行優(yōu)化和改進(jìn)D.使用多種語(yǔ)言模型進(jìn)行融合,提高回答的多樣性4、強(qiáng)化學(xué)習(xí)是另一種機(jī)器學(xué)習(xí)方法,通過(guò)與環(huán)境進(jìn)行交互并根據(jù)獎(jiǎng)勵(lì)信號(hào)來(lái)學(xué)習(xí)最優(yōu)策略。以下關(guān)于強(qiáng)化學(xué)習(xí)的敘述,不準(zhǔn)確的是()A.強(qiáng)化學(xué)習(xí)中的智能體通過(guò)不斷嘗試不同的動(dòng)作來(lái)獲取最大的累積獎(jiǎng)勵(lì)B.強(qiáng)化學(xué)習(xí)適用于解決序列決策問(wèn)題,如機(jī)器人控制和游戲策略制定C.強(qiáng)化學(xué)習(xí)不需要對(duì)環(huán)境有先驗(yàn)的了解,完全通過(guò)與環(huán)境的交互來(lái)學(xué)習(xí)D.強(qiáng)化學(xué)習(xí)的訓(xùn)練過(guò)程簡(jiǎn)單快速,通常能夠在短時(shí)間內(nèi)得到最優(yōu)的策略5、在人工智能的圖像增強(qiáng)技術(shù)中,目的是提高圖像的質(zhì)量和可讀性。假設(shè)我們要對(duì)一張低光照條件下拍攝的照片進(jìn)行增強(qiáng),以下關(guān)于圖像增強(qiáng)的方法,哪一項(xiàng)是不準(zhǔn)確的?()A.直方圖均衡化B.銳化濾波C.中值濾波D.圖像增強(qiáng)不會(huì)引入任何噪聲6、在人工智能的智能客服中,以下哪個(gè)能力對(duì)于提高用戶(hù)滿(mǎn)意度最重要?()A.快速準(zhǔn)確地回答問(wèn)題B.理解用戶(hù)的情感和意圖C.提供個(gè)性化的服務(wù)D.主動(dòng)引導(dǎo)用戶(hù)進(jìn)行交流7、在人工智能的語(yǔ)音識(shí)別任務(wù)中,需要將人類(lèi)的語(yǔ)音轉(zhuǎn)換為文字。假設(shè)要處理不同口音、語(yǔ)速和背景噪音下的語(yǔ)音,為了提高語(yǔ)音識(shí)別的準(zhǔn)確率,以下哪種方法是有效的?()A.使用大量的標(biāo)注語(yǔ)音數(shù)據(jù)進(jìn)行訓(xùn)練B.采用簡(jiǎn)單的聲學(xué)模型,減少計(jì)算復(fù)雜度C.忽略背景噪音,只關(guān)注語(yǔ)音的主要部分D.不進(jìn)行任何預(yù)處理,直接對(duì)原始語(yǔ)音進(jìn)行識(shí)別8、人工智能中的生成對(duì)抗網(wǎng)絡(luò)(GAN)是一種創(chuàng)新的模型架構(gòu)。以下關(guān)于GAN的說(shuō)法,不正確的是()A.GAN由生成器和判別器組成,通過(guò)兩者之間的對(duì)抗訓(xùn)練來(lái)生成逼真的數(shù)據(jù)B.GAN在圖像生成、文本生成和數(shù)據(jù)增強(qiáng)等領(lǐng)域取得了顯著的成果C.GAN的訓(xùn)練過(guò)程穩(wěn)定,容易收斂到最優(yōu)解D.GAN的應(yīng)用存在一些潛在的問(wèn)題,如模式崩潰和訓(xùn)練不穩(wěn)定等9、人工智能中的強(qiáng)化學(xué)習(xí)算法可以用于訓(xùn)練機(jī)器人完成復(fù)雜的任務(wù)。假設(shè)一個(gè)機(jī)器人需要通過(guò)強(qiáng)化學(xué)習(xí)學(xué)會(huì)在不同地形上行走。以下關(guān)于強(qiáng)化學(xué)習(xí)訓(xùn)練機(jī)器人的描述,哪一項(xiàng)是不正確的?()A.機(jī)器人通過(guò)與環(huán)境的交互獲得獎(jiǎng)勵(lì)或懲罰,從而調(diào)整自己的動(dòng)作策略B.可以使用模擬環(huán)境進(jìn)行大量的訓(xùn)練,以減少在真實(shí)環(huán)境中的試驗(yàn)成本和風(fēng)險(xiǎn)C.強(qiáng)化學(xué)習(xí)訓(xùn)練出的機(jī)器人策略在不同的環(huán)境條件下都能保持最優(yōu)性能,無(wú)需進(jìn)一步調(diào)整D.合理設(shè)計(jì)獎(jiǎng)勵(lì)函數(shù)對(duì)于引導(dǎo)機(jī)器人學(xué)習(xí)到期望的行為至關(guān)重要10、人工智能中的知識(shí)表示和推理是實(shí)現(xiàn)智能系統(tǒng)的基礎(chǔ)。假設(shè)要構(gòu)建一個(gè)醫(yī)療診斷專(zhuān)家系統(tǒng),能夠根據(jù)患者的癥狀、檢查結(jié)果等信息進(jìn)行推理和診斷。以下哪種知識(shí)表示方法最適合用于表示復(fù)雜的醫(yī)學(xué)知識(shí)和推理規(guī)則,并且便于系統(tǒng)的更新和維護(hù)?()A.產(chǎn)生式規(guī)則B.語(yǔ)義網(wǎng)絡(luò)C.框架表示D.一階謂詞邏輯11、人工智能中的異常檢測(cè)是一項(xiàng)重要任務(wù)。假設(shè)要在一個(gè)工業(yè)生產(chǎn)過(guò)程中檢測(cè)出異常的數(shù)據(jù)點(diǎn),以下關(guān)于異常檢測(cè)方法的描述,正確的是:()A.基于統(tǒng)計(jì)的異常檢測(cè)方法適用于所有類(lèi)型的數(shù)據(jù),準(zhǔn)確性高B.基于機(jī)器學(xué)習(xí)的異常檢測(cè)模型需要大量的正常數(shù)據(jù)進(jìn)行訓(xùn)練C.深度學(xué)習(xí)的異常檢測(cè)方法能夠自動(dòng)發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式,無(wú)需人工特征工程D.以上方法在不同的應(yīng)用場(chǎng)景中都有各自的優(yōu)缺點(diǎn),需要根據(jù)實(shí)際情況選擇12、在人工智能的發(fā)展歷程中,深度學(xué)習(xí)技術(shù)的出現(xiàn)帶來(lái)了重大突破。假設(shè)我們正在研究圖像識(shí)別任務(wù),需要對(duì)大量的圖像數(shù)據(jù)進(jìn)行訓(xùn)練,以識(shí)別不同的物體和場(chǎng)景。深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)(CNN)在處理圖像數(shù)據(jù)時(shí)具有獨(dú)特的優(yōu)勢(shì)。那么,以下關(guān)于卷積神經(jīng)網(wǎng)絡(luò)的描述,哪一項(xiàng)是不正確的?()A.能夠自動(dòng)提取圖像的特征,減少了人工特征工程的工作量B.可以處理任意大小的圖像輸入,無(wú)需對(duì)圖像進(jìn)行預(yù)處理C.其訓(xùn)練過(guò)程需要大量的計(jì)算資源和時(shí)間D.對(duì)于復(fù)雜的圖像分類(lèi)任務(wù),準(zhǔn)確率通常高于傳統(tǒng)機(jī)器學(xué)習(xí)算法13、人工智能中的知識(shí)圖譜是一種用于整合和表示知識(shí)的結(jié)構(gòu)。假設(shè)我們要構(gòu)建一個(gè)關(guān)于歷史事件的知識(shí)圖譜,以下關(guān)于知識(shí)圖譜的說(shuō)法,哪一項(xiàng)是正確的?()A.知識(shí)圖譜只能表示簡(jiǎn)單的事實(shí)關(guān)系B.構(gòu)建知識(shí)圖譜不需要領(lǐng)域?qū)<业膮⑴cC.可以通過(guò)知識(shí)圖譜進(jìn)行知識(shí)推理和查詢(xún)D.知識(shí)圖譜的更新和維護(hù)非常容易14、在人工智能的可解釋性研究中,對(duì)于一個(gè)復(fù)雜的深度學(xué)習(xí)模型,假設(shè)需要向用戶(hù)解釋模型的決策依據(jù)和輸出結(jié)果。以下哪種方法能夠提供更直觀和易于理解的解釋?zhuān)浚ǎ〢.特征重要性分析,確定輸入特征對(duì)輸出的影響B(tài).可視化中間層的激活值C.生成文本解釋?zhuān)枋瞿P偷耐评磉^(guò)程D.以上都是15、人工智能在智能推薦系統(tǒng)中發(fā)揮著重要作用。例如,電商平臺(tái)通過(guò)分析用戶(hù)的購(gòu)買(mǎi)歷史和瀏覽行為為用戶(hù)推薦商品。以下關(guān)于智能推薦系統(tǒng)的描述,哪一項(xiàng)是不正確的?()A.推薦系統(tǒng)可以基于用戶(hù)的協(xié)同過(guò)濾進(jìn)行推薦B.推薦系統(tǒng)只考慮用戶(hù)的近期行為,忽略歷史行為C.推薦系統(tǒng)可以結(jié)合內(nèi)容過(guò)濾和協(xié)同過(guò)濾提高推薦效果D.推薦系統(tǒng)需要不斷更新和優(yōu)化以適應(yīng)用戶(hù)興趣的變化16、人工智能在智能家居領(lǐng)域的應(yīng)用不斷豐富。假設(shè)一個(gè)智能家居系統(tǒng)要利用人工智能實(shí)現(xiàn)自動(dòng)化控制,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.根據(jù)家庭成員的習(xí)慣和環(huán)境條件,自動(dòng)調(diào)整燈光、溫度和家電設(shè)備B.利用語(yǔ)音識(shí)別和自然語(yǔ)言處理技術(shù),實(shí)現(xiàn)與用戶(hù)的自然交互C.人工智能可以完全理解用戶(hù)的所有需求和意圖,不會(huì)出現(xiàn)誤解D.結(jié)合傳感器數(shù)據(jù)和機(jī)器學(xué)習(xí)算法,實(shí)現(xiàn)能源的高效管理和節(jié)約17、在人工智能的農(nóng)業(yè)應(yīng)用中,精準(zhǔn)農(nóng)業(yè)可以通過(guò)傳感器和數(shù)據(jù)分析實(shí)現(xiàn)對(duì)農(nóng)作物的精細(xì)化管理。假設(shè)要根據(jù)土壤濕度和氣象數(shù)據(jù)決定灌溉量,以下哪個(gè)技術(shù)環(huán)節(jié)是最關(guān)鍵的?()A.數(shù)據(jù)的采集和傳輸B.數(shù)據(jù)分析和建模C.灌溉設(shè)備的控制D.傳感器的校準(zhǔn)18、在人工智能的強(qiáng)化學(xué)習(xí)中,假設(shè)環(huán)境的獎(jiǎng)勵(lì)信號(hào)存在延遲和不確定性。以下哪種方法能夠幫助智能體更好地應(yīng)對(duì)這種情況?()A.使用深度強(qiáng)化學(xué)習(xí)算法,具有更強(qiáng)的表示能力B.引入先驗(yàn)知識(shí)和啟發(fā)式策略C.增加訓(xùn)練的迭代次數(shù)D.以上都是19、人工智能中的遷移學(xué)習(xí)可以將在一個(gè)任務(wù)上學(xué)習(xí)到的知識(shí)應(yīng)用到其他相關(guān)任務(wù)中。假設(shè)已經(jīng)有一個(gè)在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型,要將其應(yīng)用于醫(yī)學(xué)圖像分析,以下哪個(gè)因素可能會(huì)限制遷移學(xué)習(xí)的效果?()A.數(shù)據(jù)分布的差異B.模型的復(fù)雜度C.計(jì)算資源的限制D.任務(wù)的相似性20、在人工智能的語(yǔ)音合成任務(wù)中,假設(shè)要生成自然流暢且富有情感的語(yǔ)音,以下關(guān)于模型訓(xùn)練的方法,哪一項(xiàng)是不正確的?()A.使用大量的語(yǔ)音數(shù)據(jù)進(jìn)行訓(xùn)練,包括不同的口音和情感B.引入情感標(biāo)簽,讓模型學(xué)習(xí)不同情感下的語(yǔ)音特征C.只訓(xùn)練模型生成單一的語(yǔ)音風(fēng)格,以保證一致性D.結(jié)合聲學(xué)模型和語(yǔ)言模型,提高語(yǔ)音合成的質(zhì)量21、在人工智能的圖像識(shí)別任務(wù)中,需要對(duì)大量的圖像進(jìn)行分類(lèi),例如區(qū)分貓、狗、鳥(niǎo)等不同的動(dòng)物類(lèi)別。假設(shè)數(shù)據(jù)集包含各種不同角度、光照條件和背景下的圖像,為了提高圖像識(shí)別的準(zhǔn)確率和泛化能力,以下哪種技術(shù)或策略是重要的?()A.增加數(shù)據(jù)增強(qiáng)操作,如翻轉(zhuǎn)、旋轉(zhuǎn)、縮放圖像B.使用更復(fù)雜的神經(jīng)網(wǎng)絡(luò)架構(gòu),增加層數(shù)和參數(shù)C.只使用高質(zhì)量、清晰的圖像進(jìn)行訓(xùn)練D.減少訓(xùn)練數(shù)據(jù)的數(shù)量,以加快訓(xùn)練速度22、機(jī)器學(xué)習(xí)是人工智能的重要分支,其中監(jiān)督學(xué)習(xí)是一種常見(jiàn)的學(xué)習(xí)方式。以下關(guān)于監(jiān)督學(xué)習(xí)的描述,不正確的是()A.監(jiān)督學(xué)習(xí)需要有標(biāo)記的訓(xùn)練數(shù)據(jù),即輸入數(shù)據(jù)和對(duì)應(yīng)的期望輸出B.常見(jiàn)的監(jiān)督學(xué)習(xí)算法包括決策樹(shù)、支持向量機(jī)和神經(jīng)網(wǎng)絡(luò)等C.監(jiān)督學(xué)習(xí)的目標(biāo)是通過(guò)學(xué)習(xí)訓(xùn)練數(shù)據(jù)中的模式和規(guī)律,對(duì)新的未知數(shù)據(jù)進(jìn)行準(zhǔn)確的預(yù)測(cè)或分類(lèi)D.監(jiān)督學(xué)習(xí)只能處理數(shù)值型數(shù)據(jù),對(duì)于文本、圖像等非數(shù)值型數(shù)據(jù)無(wú)法處理23、在人工智能的語(yǔ)音處理領(lǐng)域,語(yǔ)音合成技術(shù)旨在生成自然流暢的人類(lèi)語(yǔ)音。假設(shè)要開(kāi)發(fā)一個(gè)能夠?yàn)橛新曌x物生成逼真語(yǔ)音的系統(tǒng),需要考慮語(yǔ)音的韻律、語(yǔ)調(diào)等因素。以下哪種語(yǔ)音合成方法在生成高質(zhì)量、富有表現(xiàn)力的語(yǔ)音方面表現(xiàn)更為突出?()A.拼接式語(yǔ)音合成B.參數(shù)式語(yǔ)音合成C.基于深度學(xué)習(xí)的端到端語(yǔ)音合成D.基于規(guī)則的語(yǔ)音合成24、在人工智能的算法選擇中,需要根據(jù)具體問(wèn)題和數(shù)據(jù)特點(diǎn)進(jìn)行決策。假設(shè)要對(duì)大量的文本數(shù)據(jù)進(jìn)行分類(lèi),以下關(guān)于算法選擇的描述,哪一項(xiàng)是不正確的?()A.決策樹(shù)算法簡(jiǎn)單直觀,適用于處理具有明顯特征差異的文本數(shù)據(jù)B.支持向量機(jī)在小樣本數(shù)據(jù)上表現(xiàn)較好,可用于高精度的文本分類(lèi)C.隨機(jī)森林算法通過(guò)集成多個(gè)決策樹(shù),能夠提高分類(lèi)的穩(wěn)定性和準(zhǔn)確性D.選擇算法時(shí)只考慮算法的準(zhǔn)確性,而無(wú)需考慮計(jì)算資源和訓(xùn)練時(shí)間的需求25、在人工智能的發(fā)展歷程中,機(jī)器學(xué)習(xí)作為重要的分支取得了顯著的成果。假設(shè)要開(kāi)發(fā)一個(gè)能夠自動(dòng)識(shí)別手寫(xiě)數(shù)字的系統(tǒng),需要從大量的手寫(xiě)數(shù)字圖像數(shù)據(jù)中學(xué)習(xí)特征和模式。以下哪種機(jī)器學(xué)習(xí)算法在處理這種圖像數(shù)據(jù)分類(lèi)問(wèn)題上具有較大的優(yōu)勢(shì),同時(shí)能夠適應(yīng)不同的書(shū)寫(xiě)風(fēng)格和變形?()A.決策樹(shù)算法B.樸素貝葉斯算法C.卷積神經(jīng)網(wǎng)絡(luò)(CNN)D.支持向量機(jī)(SVM)二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)簡(jiǎn)述零樣本學(xué)習(xí)和少樣本學(xué)習(xí)的特點(diǎn)。2、(本題5分)解釋人工智能在氣候變化研究中的應(yīng)用。3、(本題5分)說(shuō)明模擬退火算法的工作機(jī)制。4、(本題5分)說(shuō)明如何選擇合適的機(jī)器學(xué)習(xí)算法。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)分析一個(gè)利用人工智能進(jìn)行傳統(tǒng)建筑修復(fù)方案生成的項(xiàng)目,討論其科學(xué)性和文化保護(hù)意識(shí)。2、(本題5分)研究一個(gè)使用人工智能的智能影視特效制作輔助系統(tǒng),分析其如何提高特效制作效率和質(zhì)量。3、(本題5分)考察一個(gè)基于人工智能的智能電影推薦系統(tǒng),討論其推薦準(zhǔn)確性和對(duì)觀眾觀影選擇的影響。4、(本題5分)考察一個(gè)基于人工智能的智能民間藝術(shù)創(chuàng)新發(fā)展系統(tǒng),討論其如何推動(dòng)民間藝術(shù)的創(chuàng)新。5、(本題5分)分析一個(gè)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論