三角形中的幾何計(jì)算 (2).pptx_第1頁
三角形中的幾何計(jì)算 (2).pptx_第2頁
三角形中的幾何計(jì)算 (2).pptx_第3頁
三角形中的幾何計(jì)算 (2).pptx_第4頁
三角形中的幾何計(jì)算 (2).pptx_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、2三角形中的幾何計(jì)算,【做一做】,答案:A,2.三角形中的常用結(jié)論 (1)A+B+C=180; (2)在三角形中,大邊對大角,反之,大角對大邊; (3)任意兩邊之和大于第三邊,任意兩邊之差小于第三邊; (4)三角形內(nèi)的誘導(dǎo)公式,思考辨析 判斷下列說法是否正確,正確的在后面的括號內(nèi)打“”,錯誤的打“”. (1)在ABC中,若a2b2+c2,則ABC為鈍角三角形. () (3)在ABC中,若cos A=cos C,則一定有A=C. () (4)在ABC中,若sin A=sin B,則一定有A=B. () 答案:(1)(2)(3)(4),探究一,探究二,思想方法,探究一,探究二,思想方法,探究一,探

2、究二,思想方法,反思感悟1.解決三角形中與長度有關(guān)的問題時,若所求的線段在一個三角形中,則直接利用正弦定理或余弦定理求解即可;若所求的線段在多個三角形中,要先根據(jù)條件選擇適當(dāng)?shù)娜切?再利用正弦定理或余弦定理求解. 2.解決本題的關(guān)鍵是利用余弦定理建立方程,并注意互補(bǔ)角的余弦值互為相反數(shù)這一性質(zhì)的應(yīng)用.,探究一,探究二,思想方法,變式訓(xùn)練1,(1)求sin BAD的值. (2)求BD,AC的長.,探究一,探究二,思想方法,探究一,探究二,思想方法,【例2】 如圖所示,已知圓內(nèi)接四邊形ABCD的邊長分別為AB=2,BC=6,CD=DA=4,求四邊形ABCD的面積. 分析:本題考查余弦定理和面積公

3、式的綜合運(yùn)用.本題的解題關(guān)鍵是圓的內(nèi)接四邊形的對角互補(bǔ),連接BD,把四邊形分成兩個三角形,在兩個三角形中分別用余弦定理表示出BD的長,由其相等可解出角A.,探究一,探究二,思想方法,解:連接BD,因?yàn)樗倪呅蜛BCD是圓的內(nèi)接四邊形, 所以A+C=180,所以cos C=cos (180-A)=-cos A. 在ABD中,由余弦定理,得BD2=AB2+AD2-2ABADcos A =22+42-224cos A=20-16cos A, 在BCD中,由余弦定理, 得BD2=BC2+CD2-2BCCDcos C =62+42-264cos C=52-48cos C=52+48cos A, 所以20-

4、16cos A=52+48cos A,探究一,探究二,思想方法,反思感悟1.對于四邊形等其他不是三角形的幾何圖形,通??蓪⑵浞指顬閹讉€互不重疊的三角形進(jìn)行計(jì)算. 2.求解三角形面積時,常常先根據(jù)題意求出一內(nèi)角,再進(jìn)一步求其兩邊長,其中,求角時常利用和、差角的公式變形,而求邊長則使用方程(組)求解.,探究一,探究二,思想方法,變式訓(xùn)練2 如圖,已知在ABC中,BC=5,AC=4, ,且AD=BD,求ABC的面積.,探究一,探究二,思想方法,函數(shù)思想在三角形中最值問題的應(yīng)用 【典例】如圖,在扇形AOB中,圓心角AOB等于60,半徑為2,在弧AB上有一動點(diǎn)P,過點(diǎn)P引平行于OB的直線和OA交于點(diǎn)C,

5、設(shè)AOP=,求POC面積的最大值及此時的值. 分析:要求POC面積,可根據(jù)三角形面積的表達(dá)式,先尋找某個已知角或能用角表示的角,再尋求該角的兩邊.,探究一,探究二,思想方法,探究一,探究二,思想方法,方法點(diǎn)睛在解決三角形中最值問題時,一般要根據(jù)正弦定理、余弦定理,根據(jù)已知邊和角,把所求量用已知量表示出來,建立函數(shù)模型,當(dāng)然對于函數(shù)最值的求解,往往要用到三角變換公式、二次函數(shù)、不等式等知識.,探究一,探究二,思想方法,變式訓(xùn)練,1,2,3,4,5,1.邊長為10,14,16的三角形的最大角與最小角的和為() A.90B.120C.155D.50 解析:設(shè)邊長為14的邊的對角為, 所以=60,因此最大角與最小角之和為120. 答案:B,1,2,3,4,5,2.已知在ABC中,AB=12,ACB的平分線CD把三角形的面積分成32兩部分,則cos A等于(),解析:由題意得,答案:C,1,2,3,4,5,3.在ABC中,若A=60,AC=1,ABC的面積為 ,則BC的長為.,1,2,3,4,5,4.如圖,在ABC中,若AB=AC=2, ,點(diǎn)D在BC邊上, ADC=45

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論