



下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2.1.6第二節(jié) 點到直線的距離()【學(xué)習(xí)導(dǎo)航】 知識網(wǎng)絡(luò) 點到直線的距離公式兩條平行直線之間的距離公式直接運用公式求值對稱問題的運用平面幾何中的運用學(xué)習(xí)要求 1鞏固點到直線的距離公式及兩平行直線間的距離公式;2掌握點、直線關(guān)于點成中心對稱(或關(guān)于直線成軸對稱)的點、直線的求解方法; 3能運用點到直線的距離公式及兩平行直線間的距離公式靈活解決一些問題【課堂互動】自學(xué)評價1.若與關(guān)于點對稱,則,2. 若與關(guān)于直線對稱,則與的中點落在直線上,且與的連線與垂直.【精典范例】例1:在直線上找一點,使它到原點和直線的距離相等分析:直線 與直線平行,即可算出它們之間的距離,然后利用兩點之間的距離公式算出該
2、點的坐標聽課隨筆【解】直線與之間的距離為:設(shè)直線上的點滿足題意,則,解得或,所求點的坐標為或點評:本題主要利用兩條平行直線之間的距離公式解決問題,是對上節(jié)課所學(xué)內(nèi)容的一個復(fù)習(xí)與鞏固例2:求直線關(guān)于點對稱的直線方程分析:解題的關(guān)鍵是中心對稱的兩直線互相平行,并且兩直線與對稱中心的距離相等【解】設(shè)所求直線的方程為,由點到直線的距離公式可得,(舍去)或,所以,所求直線的方程為點評:本題也可以利用點與點的對稱,設(shè)直線上任意一點(在直線上,所以)與對稱的點為則,解得,然后將,的值代入求出所求直線,比較而言,此法注重軌跡的推導(dǎo)過程,而前面的方法比較簡便,為求直線關(guān)于點對稱的直線方程的基本方法(直線關(guān)于點對
3、稱的問題)例3:已知直線:,:,求直線關(guān)于直線對稱的直線的方程分析:直線關(guān)于直線對稱,可以在上任意取兩個點,再分別求出這兩個點關(guān)于直線的對稱點,最后利用兩點式求出所要求的方程這里可以通過求出交點這個特殊點以簡化計算【解】由,解得:,過點,又顯然是直線上一點,設(shè)關(guān)于直線的對稱點為,則,解得:,即,因為直線經(jīng)過點、,所以由兩點式得它的方程為:點評: 本題為求直線關(guān)于第三條直線對稱的直線方程的基本方法(兩條直線關(guān)于第三條直線對稱的問題)注意:這里有一種特殊情況:直線關(guān)于直線對稱的直線方程為:例4:建立適當?shù)闹苯亲鴺讼?,證明:等腰三角形底邊上任意一點到兩腰的距離之和等于一腰上的高分析:要證明的結(jié)論中涉
4、及的都是點到直線的距離,故可考慮用點到直線的距離公式計算距離,因此必須建立直角坐標系.【證明】設(shè)是等腰三角形,以底邊所在直線為軸,過頂點且垂直與的直線為軸,建立直角坐標系(如圖)設(shè),(,),則直線的方程:,即:直線的方程:,聽課隨筆即:設(shè)底邊上任意一點為(),則到的距離,到的距離,到的距離 故原命題得證點評:本題主要利用點到直線的距離公式進行簡單的幾何證明方面的運用,運用代數(shù)方法研究幾何問題.追蹤訓(xùn)練一 點在軸上,若它到直線的距離等于,則的坐標是或直線關(guān)于點對稱的直線的方程為3. 光線沿直線1:照射到直線2:上后反射,求反射線所在直線的方程【解】由,解得:,過點,又顯然是直線上一點,設(shè)關(guān)于直線
5、的對稱點為,則,解得:,即,因為直線經(jīng)過點、,所以由兩點式得它的方程為求證:等腰三角形底邊延長線上任一點到兩腰(所在直線)的距離的差的絕對值等于一腰上的高分析:要證明的結(jié)論中涉及的都是點到直線的距離,故可考慮用點到直線的距離公式計算距離,因此必須建立直角坐標系【證明】設(shè)是等腰三角形,以底邊所在直線為軸,過頂點且垂直于的直線為軸,建立直角坐標系,如圖,設(shè),則,直線方程為:,即:,直線方程為:,即:,設(shè)或是底邊延長線上任意一點,則到距離為,到距離為,到距離為,當時,當時,當或時,故原命題得證【選修延伸】一、數(shù)列與函數(shù) 例:分別過兩點作兩條平行線,求滿足下列條件的兩條直線方程:(1)兩平行線間的距離
6、為;(2)這兩條直線各自繞、旋轉(zhuǎn),使它們之間的距離取最大值聽課隨筆分析:()兩條平行直線分別過,兩點,因此可以設(shè)出這兩條直線的方程之間(注意斜率是否存在),再利用兩條平行直線之間的距離公式,列出方程,解出所要求的直線的斜率;()這兩條平行直線與垂直時,兩直線之間距離最大【解】(1)當兩直線的斜率不存在時,方程分別為,滿足題意當兩直線的斜率存在時,設(shè)方程分別為與,即: 與,由題意:,解得,所以,所求的直線方程分別為:, 綜上:所求的直線方程分別為:,或(2)結(jié)合圖形,當兩直線與垂直時,兩直線之間距離最大,最大值為,同上可求得兩直線的方程此時兩直線的方程分別為,點評:()設(shè)直線方程時一定要先考慮直線的斜率是否存在,利用平行直線之間的距離公式列出相應(yīng)的方程,解出相應(yīng)的未知數(shù);()體現(xiàn)了數(shù)形結(jié)合的思想,通過圖形,發(fā)現(xiàn)問題的本質(zhì)思維點拔:對稱問題在遇到對稱問題時關(guān)鍵是分析出是屬于什么對稱情況,這里大致可以分為:點關(guān)與點對稱,點關(guān)于直線對稱,直線關(guān)于點對稱,直線關(guān)于直線對稱這四種情況,一旦確定為哪種情況后對應(yīng)本節(jié)課的四種基本方法進行求解追蹤訓(xùn)練二1兩平行直線,分別過,(),之間的距離為,求兩直線方程;()若,之間的距
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 監(jiān)理工程師2024年考試沖刺試題及答案
- 2024年預(yù)算員證考試必考點試題及答案
- 2024年銀行從業(yè)資格考試重點考查試題及答案
- 監(jiān)管要求在物流中的重要性及試題及答案
- 2025-2030中國高等教育主動學(xué)習(xí)平臺行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析研究報告
- 動物生理機制與疾病試題及答案
- 2025-2030中國高壓安全閥行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 預(yù)算員證考試分析反饋試題及答案
- 2025-2030中國餐飲街行業(yè)發(fā)展分析及發(fā)展前景與趨勢預(yù)測研究報告
- 財務(wù)風(fēng)險控制的馬工學(xué)方法試題及答案
- 全媒體運營師-國家職業(yè)標準(2023年版)
- 建筑施工現(xiàn)場安全警示牌標示(標志圖片)
- 《吸收與解吸》課件
- 智慧城市產(chǎn)業(yè)發(fā)展
- 建行存款保險知識講座
- 《工廠供配電技術(shù)》課件
- 2024年中考英語熱點閱讀練習(xí)9 中秋節(jié)(含解析)
- CT設(shè)備維保服務(wù)售后服務(wù)方案
- 初中信息技術(shù)教學(xué)中的項目式學(xué)習(xí)
- 雕塑采購?fù)稑朔桨福夹g(shù)標)
- GB/T 43241-2023法庭科學(xué)一氧化二氮檢驗氣相色譜-質(zhì)譜法
評論
0/150
提交評論