模式識(shí)別期末試題_第1頁
模式識(shí)別期末試題_第2頁
模式識(shí)別期末試題_第3頁
模式識(shí)別期末試題_第4頁
模式識(shí)別期末試題_第5頁
已閱讀5頁,還剩4頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、一、 填空與選擇填空(本題答案寫在此試卷上,30分) 1、模式識(shí)別系統(tǒng)的基本構(gòu)成單元包括: 模式采集 、 特征提取與選擇 和 模式分類 。2、統(tǒng)計(jì)模式識(shí)別中描述模式的方法一般使用 特真矢量 ;句法模式識(shí)別中模式描述方法一般有 串 、 樹 、 網(wǎng) 。3、聚類分析算法屬于 (1) ;判別域代數(shù)界面方程法屬于 (3) 。 (1)無監(jiān)督分類 (2)有監(jiān)督分類 (3)統(tǒng)計(jì)模式識(shí)別方法(4)句法模式識(shí)別方法4、若描述模式的特征量為0-1二值特征量,則一般采用 (4) 進(jìn)行相似性度量。(1)距離測(cè)度 (2)模糊測(cè)度 (3)相似測(cè)度 (4)匹配測(cè)度5、 下列函數(shù)可以作為聚類分析中的準(zhǔn)則函數(shù)的有 (1)(3)(

2、4) 。 (1) (2) (3) (4) 6、Fisher線性判別函數(shù)的求解過程是將N維特征矢量投影在 (2) 中進(jìn)行 。 (1)二維空間 (2)一維空間 (3)N-1維空間7、下列判別域界面方程法中只適用于線性可分情況的算法有 (1) ;線性可分、不可分都適用的有 (3) 。 (1)感知器算法 (2)H-K算法 (3)積累位勢(shì)函數(shù)法 8、下列四元組中滿足文法定義的有 (1)(2)(4) 。(1)(A, B, 0, 1, A01, A 0A1 , A 1A0 , B BA , B 0, A) (2)(A, 0, 1, A0, A 0A, A) (3)(S, a, b, S 00S, S 11S

3、, S 00, S 11, S)(4)(A, 0, 1, A01, A 0A1, A 1A0, A)9、影響層次聚類算法結(jié)果的主要因素有( 計(jì)算模式距離的測(cè)度、(聚類準(zhǔn)則、類間距離門限、預(yù)定的類別數(shù)目)。10、歐式距離具有( 1、2 );馬式距離具有( 1、2、3、4 )。 (1)平移不變性(2)旋轉(zhuǎn)不變性(3)尺度縮放不變性(4)不受量綱影響的特性11、線性判別函數(shù)的正負(fù)和數(shù)值大小的幾何意義是(正(負(fù))表示樣本點(diǎn)位于判別界面法向量指向的正(負(fù))半空間中;絕對(duì)值正比于樣本點(diǎn)到判別界面的距離。)。12、感知器算法 1 。 (1)只適用于線性可分的情況;(2)線性可分、不可分都適用。13、積累勢(shì)函

4、數(shù)法較之于H-K算法的優(yōu)點(diǎn)是(該方法可用于非線性可分情況(也可用于線性可分情況) );位勢(shì)函數(shù)K(x,xk)與積累位勢(shì)函數(shù)K(x)的關(guān)系為()。 14、在統(tǒng)計(jì)模式分類問題中,聶曼-皮爾遜判決準(zhǔn)則主要用于( 某一種判決錯(cuò)誤較另一種判決錯(cuò)誤更為重要)情況;最小最大判決準(zhǔn)則主要用于( 先驗(yàn)概率未知的)情況。15、“特征個(gè)數(shù)越多越有利于分類”這種說法正確嗎?( 錯(cuò)誤 )。特征選擇的主要目的是(從n個(gè)特征中選出最有利于分類的的m個(gè)特征(mn )的條件下,可以使用分支定界法以減少計(jì)算量。16、 散度Jij越大,說明wi類模式與wj類模式的分布(差別越大);當(dāng)wi類模式與wj類模式的分布相同時(shí),Jij=(0

5、)。17、 已知有限狀態(tài)自動(dòng)機(jī)Af=(,Q,d,q0,F(xiàn)),=0,1;Q=q0,q1;d:d(q0,0)= q1,d(q0,1)= q1,d(q1,0)=q0,d(q1,1)=q0;q0=q0;F=q0?,F(xiàn)有輸入字符串:(a) ,(b) ,(c) 0,(d),試問,用Af對(duì)上述字符串進(jìn)行分類的結(jié)果為( 1:a,d;2:b,c )。18、影響聚類算法結(jié)果的主要因素有( )。已知類別的樣本質(zhì)量;分類準(zhǔn)則;特征選??;模式相似性測(cè)度。19、模式識(shí)別中,馬式距離較之于歐式距離的優(yōu)點(diǎn)是( )。 平移不變性;旋轉(zhuǎn)不變性;尺度不變性;考慮了模式的分布。20、基于二次準(zhǔn)則函數(shù)的H-K算法較之于感知器算法的優(yōu)點(diǎn)是

6、( )。可以判別問題是否線性可分;其解完全適用于非線性可分的情況;其解的適應(yīng)性更好;計(jì)算量小。21、影響基本C均值算法的主要因素有( )。樣本輸入順序;模式相似性測(cè)度;聚類準(zhǔn)則;初始類心的選取。22、位勢(shì)函數(shù)法的積累勢(shì)函數(shù)K(x)的作用相當(dāng)于Bayes判決中的( )。先驗(yàn)概率;后驗(yàn)概率;類概率密度;類概率密度與先驗(yàn)概率的乘積。23、在統(tǒng)計(jì)模式分類問題中,當(dāng)先驗(yàn)概率未知時(shí),可以使用( )。最小損失準(zhǔn)則;最小最大損失準(zhǔn)則;最小誤判概率準(zhǔn)則;N-P判決。24、在( )情況下,用分支定界法做特征選擇計(jì)算量相對(duì)較少。Cndn,(n為原特征個(gè)數(shù),d為要選出的特征個(gè)數(shù));樣本較多;選用的可分性判據(jù)J對(duì)特征數(shù)

7、目單調(diào)不減;選用的可分性判據(jù)J具有可加性。25、 散度JD是根據(jù)( )構(gòu)造的可分性判據(jù)。先驗(yàn)概率;后驗(yàn)概率;類概率密度;信息熵;幾何距離。26、似然函數(shù)的概型已知且為單峰,則可用( )估計(jì)該似然函數(shù)。矩估計(jì);最大似然估計(jì);Bayes估計(jì);Bayes學(xué)習(xí);Parzen窗法。27、Kn近鄰元法較之Parzen窗法的優(yōu)點(diǎn)是( )。所需樣本數(shù)較少;穩(wěn)定性較好;分辨率較高;連續(xù)性較好。28、從分類的角度講,用DKLT做特征提取主要利用了DKLT的性質(zhì):( )。變換產(chǎn)生的新分量正交或不相關(guān);以部分新的分量表示原矢量均方誤差最??;使變換后的矢量能量更趨集中;29、一般,剪輯k-NN最近鄰方法在( )的情況下

8、效果較好。樣本數(shù)較大;樣本數(shù)較??;樣本呈團(tuán)狀分布;樣本呈鏈狀分布。30、如果以特征向量的相關(guān)系數(shù)作為模式相似性測(cè)度,則影響聚類算法結(jié)果的主要因素有( )。已知類別樣本質(zhì)量;分類準(zhǔn)則;特征選??;量綱。二、(15分)簡(jiǎn)答及證明題 (1)影響聚類結(jié)果的主要因素有那些?(2)證明馬氏距離是平移不變的、非奇異線性變換不變的。答:(1)分類準(zhǔn)則,模式相似性測(cè)度,特征量的選擇,量綱。(2)證明: (2分) (2分)(1分)三、(8分)說明線性判別函數(shù)的正負(fù)和數(shù)值大小在分類中的意義并證明之。答:(1)(4分)的絕對(duì)值正比于到超平面的距離 式(1-1)的分子為判別函數(shù)絕對(duì)值,上式表明,的值正比于到超平面的距離,

9、一個(gè)特征矢量代入判別函數(shù)后所得值的絕對(duì)值越大表明該特征點(diǎn)距判別界面越遠(yuǎn)。 (2)(4分)判別函數(shù)值的正負(fù)表示出特征點(diǎn)位于哪個(gè)半空間中,或者換句話說,表示特征點(diǎn)位于界面的哪一側(cè)。四、(12分,每問4分) 在目標(biāo)識(shí)別中,假定有農(nóng)田和裝甲車兩種類型,類型w1和類型w2分別代表農(nóng)田和裝甲車,它們的先驗(yàn)概率分別為0.8和0.2,損失函數(shù)如表1所示?,F(xiàn)在做了三次試驗(yàn),獲得三個(gè)樣本的類概率密度如下: :0.3,0.1,0.6 :0.7,0.8,0.3 (1)試用貝葉斯最小誤判概率準(zhǔn)則判決三個(gè)樣本各屬于哪一個(gè)類型;(2)假定只考慮前兩種判決,試用貝葉斯最小風(fēng)險(xiǎn)準(zhǔn)則判決三個(gè)樣本各屬于哪一類;(3)把拒絕判決考慮

10、在內(nèi),重新考核三次試驗(yàn)的結(jié)果。 表1類型損失判決145111解:由題可知:,(1)(4分)根據(jù)貝葉斯最小誤判概率準(zhǔn)則知:,則可以任判;,則判為;,則判為;(2)(4分)由題可知:則 ,判為; ,判為; ,判為;(3)(4分)對(duì)于兩類問題,對(duì)于樣本,假設(shè)已知,有則對(duì)于第一個(gè)樣本,則拒判;,則拒判;,拒判。 五、1.監(jiān)督學(xué)習(xí)與非監(jiān)督學(xué)習(xí)的區(qū)別:監(jiān)督學(xué)習(xí)方法用來對(duì)數(shù)據(jù)實(shí)現(xiàn)分類,分類規(guī)則通過訓(xùn)練獲得。該訓(xùn)練集由帶分類號(hào)的數(shù)據(jù)集組成,因此監(jiān)督學(xué)習(xí)方法的訓(xùn)練過程是離線的。非監(jiān)督學(xué)習(xí)方法不需要單獨(dú)的離線訓(xùn)練過程,也沒有帶分類號(hào)(標(biāo)號(hào))的訓(xùn)練數(shù)據(jù)集,一般用來對(duì)數(shù)據(jù)集進(jìn)行分析,如聚類,確定其分布的主分量等。(實(shí)

11、例:道路圖)就道路圖像的分割而言,監(jiān)督學(xué)習(xí)方法則先在訓(xùn)練用圖像中獲取道路象素與非道路象素集,進(jìn)行分類器設(shè)計(jì),然后用所設(shè)計(jì)的分類器對(duì)道路圖像進(jìn)行分割。使用非監(jiān)督學(xué)習(xí)方法,則依據(jù)道路路面象素與非道路象素之間的聚類分析進(jìn)行聚類運(yùn)算,以實(shí)現(xiàn)道路圖像的分割。2. 線性分類器三種最優(yōu)準(zhǔn)則:Fisher準(zhǔn)則:根據(jù)兩類樣本一般類內(nèi)密集, 類間分離的特點(diǎn),尋找線性分類器最佳的法線向量方向,使兩類樣本在該方向上的投影滿足類內(nèi)盡可能密集,類間盡可能分開。該種度量通過類內(nèi)離散矩陣Sw和類間離散矩陣Sb實(shí)現(xiàn)。感知準(zhǔn)則函數(shù):準(zhǔn)則函數(shù)以使錯(cuò)分類樣本到分界面距離之和最小為原則。其優(yōu)點(diǎn)是通過錯(cuò)分類樣本提供的信息對(duì)分類器函數(shù)進(jìn)行

12、修正,這種準(zhǔn)則是人工神經(jīng)元網(wǎng)絡(luò)多層感知器的基礎(chǔ)。支持向量機(jī):基本思想是在兩類線性可分條件下,所設(shè)計(jì)的分類器界面使兩類之間的間隔為最大, 它的基本出發(fā)點(diǎn)是使期望泛化風(fēng)險(xiǎn)盡可能小。一、 試說明Mahalanobis距離平方的定義,到某點(diǎn)的Mahalanobis距離平方為常數(shù)的軌跡的幾何意義,它與歐氏距離的區(qū)別與聯(lián)系。答:Mahalanobis距離的平方定義為:其中x,u為兩個(gè)數(shù)據(jù),是一個(gè)正定對(duì)稱矩陣(一般為協(xié)方差矩陣)。根據(jù)定義,距某一點(diǎn)的Mahalanobis距離相等點(diǎn)的軌跡是超橢球,如果是單位矩陣,則Mahalanobis距離就是通常的歐氏距離。二、 試說明用監(jiān)督學(xué)習(xí)與非監(jiān)督學(xué)習(xí)兩種方法對(duì)道路

13、圖像中道路區(qū)域的劃分的基本做法,以說明這兩種學(xué)習(xí)方法的定義與它們間的區(qū)別。答:監(jiān)督學(xué)習(xí)方法用來對(duì)數(shù)據(jù)實(shí)現(xiàn)分類,分類規(guī)則通過訓(xùn)練獲得。該訓(xùn)練集由帶分類號(hào)的數(shù)據(jù)集組成,因此監(jiān)督學(xué)習(xí)方法的訓(xùn)練過程是離線的。非監(jiān)督學(xué)習(xí)方法不需要單獨(dú)的離線訓(xùn)練過程,也沒有帶分類號(hào)(標(biāo)號(hào))的訓(xùn)練數(shù)據(jù)集,一般用來對(duì)數(shù)據(jù)集進(jìn)行分析,如聚類,確定其分布的主分量等。就道路圖像的分割而言,監(jiān)督學(xué)習(xí)方法則先在訓(xùn)練用圖像中獲取道路象素與非道路象素集,進(jìn)行分類器設(shè)計(jì),然后用所設(shè)計(jì)的分類器對(duì)道路圖像進(jìn)行分割。使用非監(jiān)督學(xué)習(xí)方法,則依據(jù)道路路面象素與非道路象素之間的聚類分析進(jìn)行聚類運(yùn)算,以實(shí)現(xiàn)道路圖像的分割。三、 試述動(dòng)態(tài)聚類與分級(jí)聚類這兩

14、種方法的原理與不同。答:動(dòng)態(tài)聚類是指對(duì)當(dāng)前聚類通過迭代運(yùn)算改善聚類;分級(jí)聚類則是將樣本個(gè)體,按相似度標(biāo)準(zhǔn)合并,隨著相似度要求的降低實(shí)現(xiàn)合并。四、 試說明以下問題求解是基于監(jiān)督學(xué)習(xí)或是非監(jiān)督學(xué)習(xí):1. 求數(shù)據(jù)集的主分量2. 漢字識(shí)別3. 自組織特征映射4. CT圖像的分割答: 1、求數(shù)據(jù)集的主分量是非監(jiān)督學(xué)習(xí)方法;2、漢字識(shí)別對(duì)待識(shí)別字符加上相應(yīng)類別號(hào)有監(jiān)督學(xué)習(xí)方法;3、自組織特征映射將高維數(shù)組按保留近似度向低維映射非監(jiān)督學(xué)習(xí);4、CT圖像分割按數(shù)據(jù)自然分布聚類非監(jiān)督學(xué)習(xí)方法;五、 試列舉線性分類器中最著名的三種最佳準(zhǔn)則以及它們各自的原理。答:線性分類器三種最優(yōu)準(zhǔn)則:Fisher準(zhǔn)則:根據(jù)兩類樣

15、本一般類內(nèi)密集, 類間分離的特點(diǎn),尋找線性分類器最佳的法線向量方向,使兩類樣本在該方向上的投影滿足類內(nèi)盡可能密集,類間盡可能分開。該種度量通過類內(nèi)離散矩陣Sw和類間離散矩陣Sb實(shí)現(xiàn)。感知準(zhǔn)則函數(shù):準(zhǔn)則函數(shù)以使錯(cuò)分類樣本到分界面距離之和最小為原則。其優(yōu)點(diǎn)是通過錯(cuò)分類樣本提供的信息對(duì)分類器函數(shù)進(jìn)行修正,這種準(zhǔn)則是人工神經(jīng)元網(wǎng)絡(luò)多層感知器的基礎(chǔ)。支持向量機(jī):基本思想是在兩類線性可分條件下,所設(shè)計(jì)的分類器界面使兩類之間的間隔為最大, 它的基本出發(fā)點(diǎn)是使期望泛化風(fēng)險(xiǎn)盡可能小。十、對(duì)一副道路圖像,希望把道路部分劃分出來,可以采用以下兩種方法:1在該圖像中分別在道路部分與非道路部分畫出一個(gè)窗口,把在這兩個(gè)窗

16、口中的象素?cái)?shù)據(jù)作為訓(xùn)練集,用Fisher準(zhǔn)則方法求得分類器參數(shù),再用該分類器對(duì)整幅圖進(jìn)行分類。2將整幅圖的每個(gè)象素的屬性記錄在一張數(shù)據(jù)表中,然后用某種方法將這些數(shù)據(jù)按它們的自然分布狀況劃分成兩類。因此每個(gè)象素就分別得到相應(yīng)的類別號(hào),從而實(shí)現(xiàn)了道路圖像的分割。試問以上兩種方法哪一種是監(jiān)督學(xué)習(xí),哪個(gè)是非監(jiān)督學(xué)習(xí)?答:第一種方法中標(biāo)記了兩類樣本的標(biāo)號(hào),需要人手工干預(yù)訓(xùn)練過程,屬于監(jiān)督學(xué)習(xí)方法;第二種方法只是依照數(shù)據(jù)的自然分布,把它們劃分成兩類,屬于非監(jiān)督學(xué)習(xí)方法。十三、試分析五種常用決策規(guī)則思想方法的異同。答、五種常用決策是: 1. 基于最小錯(cuò)誤率的貝葉斯決策,利用概率論中的貝葉斯公式,得出使得錯(cuò)誤

17、率最小的分類規(guī)則。 2. 基于最小風(fēng)險(xiǎn)的貝葉斯決策,引入了損失函數(shù),得出使決策風(fēng)險(xiǎn)最小的分類。當(dāng)在01損失函數(shù)條件下,基于最小風(fēng)險(xiǎn)的貝葉斯決策變成基于最小錯(cuò)誤率的貝葉斯決策。 3. 在限定一類錯(cuò)誤率條件下使另一類錯(cuò)誤率最小的兩類別決策。 4. 最大最小決策:類先驗(yàn)概率未知,考察先驗(yàn)概率變化對(duì)錯(cuò)誤率的影響,找出使最小貝葉斯奉獻(xiàn)最大的先驗(yàn)概率,以這種最壞情況設(shè)計(jì)分類器。 5. 序貫分類方法,除了考慮分類造成的損失外,還考慮特征獲取造成的代價(jià),先用一部分特征分類,然后逐步加入性特征以減少分類損失,同時(shí)平衡總的損失,以求得最有效益。十四、假設(shè)在某個(gè)地區(qū)細(xì)胞識(shí)別中正常(w1)和異常(w2)兩類先驗(yàn)概率分

18、別為 P(w1)=0.9,P(w2)=0.1,現(xiàn)有一待識(shí)別的細(xì)胞,其觀察值為x,從類條件概率密度分布曲線上查得,并且已知,試對(duì)該細(xì)胞x用一下兩種方法進(jìn)行分類:1.基于最小錯(cuò)誤率的貝葉斯決策;2.基于最小風(fēng)險(xiǎn)的貝葉斯決策;請(qǐng)分析兩種結(jié)果的異同及原因。2. 十五、有線性判別函數(shù),為什么還要引進(jìn)非線性判別函數(shù)?分析由“線性判別函數(shù)”向“非線性判別函數(shù)”推廣的思想和方法。答:實(shí)際中有很多模式識(shí)別問題并不是線性可分的,這時(shí)就需要采用非線性分類器,比如當(dāng)兩類樣本分不具有多峰性質(zhì)并互相交錯(cuò)時(shí),簡(jiǎn)單的線性判別函數(shù)往往會(huì)帶來較大的分類錯(cuò)誤。這時(shí),樹分類器作為一種分段線性分類器,常常能有效地應(yīng)用于這種情況。十六、1. 什么是特征選擇?2. 什么是Fisher線性判別?答:1. 特征選擇就是從一組特征中挑選出一些最有效的特征以達(dá)到降低特征空間維數(shù)的目的。 2. Fisher線性判別:可以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論