微電子電路-microelectronic-circuit-標(biāo)準(zhǔn)課件--sedra著作_第1頁(yè)
微電子電路-microelectronic-circuit-標(biāo)準(zhǔn)課件--sedra著作_第2頁(yè)
微電子電路-microelectronic-circuit-標(biāo)準(zhǔn)課件--sedra著作_第3頁(yè)
微電子電路-microelectronic-circuit-標(biāo)準(zhǔn)課件--sedra著作_第4頁(yè)
微電子電路-microelectronic-circuit-標(biāo)準(zhǔn)課件--sedra著作_第5頁(yè)
已閱讀5頁(yè),還剩63頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、1,Signal Generators and Waveform-Shaping Circuits,Figure 13.1 The basic structure of a sinusoidal oscillator. A positive-feedback loop is formed by an amplifier and a frequency-selective network. In an actual oscillator circuit, no input signal will be present; here an input signal xs is employed to

2、 help explain the principle of operation.,Figure 13.2 Dependence of the oscillator-frequency stability on the slope of the phase response. A steep phase response (i.e., large df/dw) results in a samll Dw0 for a given change in phase Df (resulting from a change (due, for example, to temperature) in a

3、 circuit component).,Figure 13.3 (a) A popular limiter circuit. (b) Transfer characteristic of the limiter circuit; L- and L+ are given by Eqs. (13.8) and (13.9), respectively. (c) When Rf is removed, the limiter turns into a comparator with the characteristic shown.,Figure 13.4 A Wien-bridge oscill

4、ator without amplitude stabilization.,Figure 13.5 A Wien-bridge oscillator with a limiter used for amplitude control.,Figure 13.6 A Wien-bridge oscillator with an alternative method for amplitude stabilization.,Figure 13.7 A phase-shift oscillator.,Figure 13.8 A practical phase-shift oscillator with

5、 a limiter for amplitude stabilization.,Figure 13.9 (a) A quadrature-oscillator circuit. (b) Equivalent circuit at the input of op amp 2.,Figure 13.10 Block diagram of the active-filter-tuned oscillator.,Figure 13.11 A practical implementation of the active-filter-tuned oscillator.,Figure 13.12 Two

6、commonly used configurations of LC-tuned oscillators: (a) Colpitts and (b) Hartley.,Figure 13.13 Equivalent circuit of the Colpitts oscillator of Fig. 13.12(a). To simplify the analysis, Cm and rp are neglected. We can consider Cp to be part of C2, and we can include ro in R.,Figure 13.14 Complete c

7、ircuit for a Colpitts oscillator.,Figure 13.15 A piezoelectric crystal. (a) Circuit symbol. (b) Equivalent circuit. (c) Crystal reactance versus frequency note that, neglecting the small resistance r, Zcrystal = jX(w).,Figure 13.16 A Pierce crystal oscillator utilizing a CMOS inverter as an amplifie

8、r.,Figure 13.17 A positive-feedback loop capable of bistable operation.,Figure 13.18 A physical analogy for the operation of the bistable circuit. The ball cannot remain at the top of the hill for any length of time (a state of unstable equilibrium or metastability); the inevitably present disturban

9、ce will cause the ball to fall to one side or the other, where it can remain indefinitely (the two stable states).,Figure 13.19 (a) The bistable circuit of Fig. 13.17 with the negative input terminal of the op amp disconnected from ground and connected to an input signal vI. (b) The transfer charact

10、eristic of the circuit in (a) for increasing vI. (c) The transfer characteristic for decreasing vI. (d) The complete transfer characteristics.,Figure 13.20 (a) A bistable circuit derived from the positive-feedback loop of Fig. 13.17 by applying vI through R1. (b) The transfer characteristic of the c

11、ircuit in (a) is noninverting. (Compare it to the inverting characteristic in Fig. 13.19d.),Figure 13.21 (a) Block diagram representation and transfer characteristic for a comparator having a reference, or threshold, voltage VR. (b) Comparator characteristic with hysteresis.,Figure 13.22 Illustratin

12、g the use of hysteresis in the comparator characteristics as a means of rejecting interference.,Figure 13.23 Limiter circuits are used to obtain more precise output levels for the bistable circuit. In both circuits the value of R should be chosen to yield the current required for the proper operatio

13、n of the zener diodes. (a) For this circuit L+ = VZ1 + VD and L = (VZ2 + VD), where VD is the forward diode drop. (b) For this circuit L+ = VZ + VD1 + VD2 and L = (VZ + VD3 + VD4).,Figure 13.24 (a) Connecting a bistable multivibrator with inverting transfer characteristics in a feedback loop with an

14、 RC circuit results in a square-wave generator.,Figure 13.24 (Continued) (b) The circuit obtained when the bistable multivibrator is implemented with the circuit of Fig. 13.19(a). (c) Waveforms at various nodes of the circuit in (b). This circuit is called an astable multivibrator.,Figure 13.25 A ge

15、neral scheme for generating triangular and square waveforms.,Figure 13.26 (a) An op-amp monostable circuit. (b) Signal waveforms in the circuit of (a).,Figure 13.27 A block diagram representation of the internal circuit of the 555 integrated-circuit timer.,Figure 13.28 (a) The 555 timer connected to

16、 implement a monostable multivibrator. (b) Waveforms of the circuit in (a).,Figure 13.29 (a) The 555 timer connected to implement an astable multivibrator. (b) Waveforms of the circuit in (a).,Figure 13.30 Using a nonlinear (sinusoidal) transfer characteristic to shape a triangular waveform into a s

17、inusoid.,Figure 13.31 (a) A three-segment sine-wave shaper. (b) The input triangular waveform and the output approximately sinusoidal waveform.,Figure 13.32 A differential pair with an emitter degeneration resistance used to implement a triangular-wave to sine-wave converter. Operation of the circui

18、t can be graphically described by Fig. 13.30.,Figure 13.33 (a) The “superdiode” precision half-wave rectifier and (b) its almost ideal transfer characteristic. Note that when vI 0 and the diode conducts, the op amp supplies the load current, and the source is conveniently buffered, an added advantag

19、e.,Figure 13.34 (a) An improved version of the precision half-wave rectifier: Diode D2 is included to keep the feedback loop closed around the op amp during the off times of the rectifier diode D1, thus preventing the op amp from saturating. (b) The transfer characteristic for R2 = R1.,Figure 13.35

20、A simple ac voltmeter consisting of a precision half-wave rectifier followed by a first-order low-pass filter.,Figure 13.36 Principle of full-wave rectification.,Figure 13.37 (a) Precision full-wave rectifier based on the conceptual circuit of Fig. 13.36. (b) Transfer characteristic of the circuit i

21、n (a).,Figure 13.38 Use of the diode bridge in the design of an ac voltmeter.,Figure 13.39 A precision peak rectifier obtained by placing the diode in the feedback loop of an op amp.,Figure 13.40 A buffered precision peak rectifier.,Figure 13.41 A precision clamping circuit.,Figure 13.42 Example 13.1: Capture schematic of a Wien-bridge oscillator.,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論