數(shù)學畢業(yè)論文Riemann積分可積性理論探討_第1頁
數(shù)學畢業(yè)論文Riemann積分可積性理論探討_第2頁
數(shù)學畢業(yè)論文Riemann積分可積性理論探討_第3頁
數(shù)學畢業(yè)論文Riemann積分可積性理論探討_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、riemann積分可積性理論探討riemann積分可積性理論探討摘要本文較為系統(tǒng)地討論了積分可積性理論:通過分析諸多積分概念的共性,抽象定義了積分,詳細討論了其可積性理論,得出了可積函數(shù)類 . 從極限理論出發(fā)定義了正規(guī)函數(shù),其可積性理論統(tǒng)1 了積分的 3 個常用的充分條件,并用理論和有限覆蓋定理予以證明 . 通過定義 0 測度集給出了 可積函數(shù)的 特征,討論了其幾乎處處連續(xù)與極限存在的關(guān)系,從而得到了從函數(shù)可積性到連續(xù)性,從連續(xù)性到極限存在性的函數(shù)特性理論,即可積函數(shù)中極限的幾乎處處存在與幾乎處處連續(xù)是等價的,得出比正規(guī)函數(shù)更加寬泛的統(tǒng) 1條件,得出了有界變差函數(shù)是可積函數(shù)的結(jié)論 . 通過定義

2、多維 0測度集將 可積函數(shù)的 特征擴展到多維情形,同樣統(tǒng)1 了多維情形的充分條件,建立了多維情形的可積性理論. 關(guān)鍵詞積分;可積條件;正規(guī)函數(shù);幾乎處處連續(xù);0 測度集;極限the study of the the integrability ofriemannsintegral theoryabstractthis paper discusses the integ rability of riemann s integral theory systematically: by analyzing the common characters of a lot of integral calc

3、ulus, it abstractsthe concept of riemann integral and discusses itsintegrability of riemann s integral theory and then gets integrable functions. it defines the regulated functionfrom the theory of extreme limit,the integrability theoryof the regulated function unifies the three commonsufficient con

4、ditions of the integral, then the paperproves that with the darboux theory and heine-boreltheory. by getting lebesgue characteristic of integrablefunction of riemann from the definition of gather zeromeasure, discussing the relation between almostcontinuous everywhere and existent of limit, it gets

5、thetheory which is from the function integrability to theconsecution and from consecution to the limitexistence .i.e. the almost limit existence is equal tothe almost continuous everywhere in the integrablefunction of riemann. it also gets a unified conditionwhich has a wider range than regulated fu

6、nction and comesto the conclusion that the function of bounded variationis the integrable function of riemann. it expands lebesgue characteristic of integrable function of riemann through the definition of gather zero measure and builds up the theory of many integral calculus.keywords: riemann integ

7、ral; integrable condition; regulated function;almost continuous everywhere; gather zero measure; extreme limitriemann積分可積性理論探討摘要本文較為系統(tǒng)地討論了 積分可積性理論:通過分析諸多積分概念的共性,抽象定義了 積分,詳細討論了其可積性理論,得出了可積函數(shù)類 . 從極限理論出發(fā)定義了正規(guī)函數(shù),其可積性理論統(tǒng)1 了 積分的 3 個常用的充分條件,并用理論和有限覆蓋定理予以證明 . 通過定義 0 測度集給出了可積函數(shù)的特征,討論了其幾乎處處連續(xù)與極限存在的關(guān)系,從而得到了從函數(shù)

8、可積性到連續(xù)性,從連續(xù)性到極限存在性的函數(shù)特性理論,即可積函數(shù)中極限的幾乎處處存在與幾乎處處連續(xù)是等價的,得出比正規(guī)函數(shù)更加寬泛的統(tǒng) 1 條件,得出了有界變差函數(shù)是可積函數(shù)的結(jié)論 . 通過定義多維 0 測度集將可積函數(shù)的特征擴展到多維情形,同樣統(tǒng)1了多維情形的充分條件,建立了多維情形的可積性理論. 關(guān)鍵詞積分;可積條件;正規(guī)函數(shù);幾乎處處連續(xù);0 測度集;極限the study of the the integrability ofriemannsintegral theoryabstractthis paper discusses the integrability of riemann i

9、ntegral theory systematically: by analyzing the common characters of a lot of integral calculus, it abstracts the concept of riemann integral and discusses its integrability of riemann s integral theory and then getssintegrable functions. it defines the regulated function from the theory of extreme

10、limit,the integrability theory of the regulated function unifies the three common sufficient conditions of the integral, then the paper proves that with the darboux theory and heine-borel theory. by getting lebesgue characteristic of integrable function of riemann from the definition of gather zero

11、measure, discussing the relation between almost continuous everywhere and existent of limit, it gets thetheory which is from the function integrability to theconsecution and from consecution to the limitexistence .i.e. the almost limit existence is equal tothe almost continuous everywhere in the int

12、egrablefunction of riemann. it also gets a unified conditionwhich has a wider range than regulated function and comesto the conclusion that the function of bounded variationis the integrable function of riemann. it expands lebesgue characteristic of integrable function of riemann through the definition of gather zero me

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論