線性代數(shù)教學(xué)資料—chapter4_第1頁(yè)
線性代數(shù)教學(xué)資料—chapter4_第2頁(yè)
線性代數(shù)教學(xué)資料—chapter4_第3頁(yè)
線性代數(shù)教學(xué)資料—chapter4_第4頁(yè)
線性代數(shù)教學(xué)資料—chapter4_第5頁(yè)
已閱讀5頁(yè),還剩34頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、4 THE EIGENVALUE PROBLEM,Overview,In section 4.4 we move on to the general case, the eigenvalue problem for (nn) matrices. The general case requires several results from determinant theory, and these are summarized in section 4.2.,The eigenvalue problem is of great practical importance in mathematic

2、s and applications.,In section 4.1 we introduce the eigenvalue problem for the special case of (22) matrices; this special case can be handled using ideas developed in Chapter 1.,Core sections,The eigenvalue problem for (22) matrices Eigenvalues and the characteristic polynomial Eigenvectors and eig

3、enspaces Similarity transformations and diagonalization,4.1 The eigenvalue problem for (22) matrices,All scalars,Nonzero solution/ Infinitely many solution,1. The eigenvalue problem,The Geometric interpretation of Eigenvalue and eigenvector,The calculation of Eigenvalue and eigenvector,Homogeneous S

4、ystems,Eigenvalue and eigenvectors for (22) matrices,Example: Find all eigenvalues and eigenvectors of A, where,4.2 Determinants and the eigenvalue problem (omit),4.3 Elementary operations and determinants (omit),4.4 Eigenvalues and the characteristic polynomial,Example: Use the singularity test to

5、determine the eigenvalues of the matrix A, where,In this section we focus on part 1, finding the eigenvalues.,The characteristic polynomial,characteristic polynomial,characteristic equation,(1) an (nn) matrix can have no more than n distinct eigenvalues.,(2) an (nn) matrix always has at least one ei

6、genvalue.,Special Results,4.5 Eigenvectors and Eigenspaces,Eigenspaces and Geometric Multiplicity,Example Determine the algebraic and geometric multiplicities for the eigenvalues of A,Proof:,Corollary: Let A be an (nn) matrix. If A has n distinct eigenvalues, then A has a set of n linearly independe

7、nt eigenvectors.,4.7 Similarity Transformations And Diagonalization,In Chapter 1, we saw that two linear systems of equations have the same solution if their augmented matrices are row equivalent. In this chapter, we are interested in identifying classes of matrices that have the same eigenvalues.,D

8、efinition: The (nn) matrices A and B are said to be similar (denoted AB) if there is a nonsingular (nn) matrix S such that B=S-1AS.,Similarity,Theorem: If A and B are similar (nn) matrices, then A and B have the same eigenvalues. Moreover, these eigenvalues have the same algebraic multiplicity.,Note

9、: not generally have the same eigenvectors.,D is a diagonal matrix.,Diagonalization,Theorem: An (nn) matrix A is diagonalizable if and only if A possesses a set of n linearly independent eigenvectors.,Theorem: Let A be an (nn) matrix with n distinct eigenvalues. Then A is diagonalizable.,Whenever an

10、 (nn) matrix A is similar to a diagonal matrix, we say that A is diagonalizable.,Proof:,Proof:,Example Show that A is diagonalizable ,where,Orthogonal Matrices,A remarkable and useful fact about symmetric matrices is that they are always diagonalizable. Moreover, the diagonalization of a symmetric m

11、atrix A can be accomplished with a special type of matrix know as an orthogonal matrix.,Definition: A real (nn) matrix Q is called an orthogonal matrix if Q is invertible and Q-1=QT.,Theorem: Let Q be an (nn) orthogonal matrix. If X is in Rn, then |Q X |=| X |. If X and Y are in Rn , then (Q X)T(QY)

12、= X TY. det(Q)=1.,Diagonalizaiton of Symmetric Matrices,We conclude this section by showing that every symmetric matrix can be diagonalized by an orthogonal matrix.,Theorem: Let A be an (nn) real symmetric matrix, then the eigenvalues of A are real. (P319),Corollary: Let A be a real (nn) symmetric matri

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論