2018年秋九年級數(shù)學(xué)上冊解一元二次方程21.2.4一元二次方程的根與系數(shù)的關(guān)系課后作業(yè).doc_第1頁
2018年秋九年級數(shù)學(xué)上冊解一元二次方程21.2.4一元二次方程的根與系數(shù)的關(guān)系課后作業(yè).doc_第2頁
2018年秋九年級數(shù)學(xué)上冊解一元二次方程21.2.4一元二次方程的根與系數(shù)的關(guān)系課后作業(yè).doc_第3頁
2018年秋九年級數(shù)學(xué)上冊解一元二次方程21.2.4一元二次方程的根與系數(shù)的關(guān)系課后作業(yè).doc_第4頁
2018年秋九年級數(shù)學(xué)上冊解一元二次方程21.2.4一元二次方程的根與系數(shù)的關(guān)系課后作業(yè).doc_第5頁
已閱讀5頁,還剩1頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

21.2.4一元二次方程的根與系數(shù)的關(guān)系1.已知,是關(guān)于x的一元二次方程x2+(2m+3)x+m20的兩個(gè)不相等的實(shí)數(shù)根,且滿足:,則m的值是( )A3 B1 C3或1 D3或12.已知關(guān)于x的一元二次方程x2+2x+k+10的兩個(gè)實(shí)數(shù)根分別為x1,x2,且x1,x2滿足x1+x2x1x21,則k的取值范圍在數(shù)軸上表示為( )3.設(shè)方程x2+x20的兩個(gè)根分別為,那么(1)(1)的值等于( )A4 B2 C0 D24.已知,是方程x25x20的兩個(gè)實(shí)數(shù)根,則2+2的值是( )A1 B9 C23 D275.有兩個(gè)一元二次方程:M:ax2+bx+c0,N:cx2+bx+a0,其中a+c0,以下四個(gè)結(jié)論中,錯(cuò)誤的是( )A如果方程M有兩個(gè)不相等的實(shí)數(shù)根,那么方程N(yùn)也有兩個(gè)不相等的實(shí)數(shù)根B如果方程M有兩根符號相同,那么方程N(yùn)的兩根符號也相同C如果5是方程M的一個(gè)根,那么是方程N(yùn)的一個(gè)根D如果方程M和方程N(yùn)有一個(gè)相同的根,那么這個(gè)根必是x16.若關(guān)于x的一元二次方程x2(a+5)x+8a0的兩個(gè)實(shí)數(shù)根分別為2和b,則ab_.7.已知一元二次方程x26x50的兩根分別為a,b,則a1+b1_.8.已知m,n是關(guān)于x的一元二次方程x23x+a0的兩個(gè)解,若(m1)(n1)6,則a的值為_.9.設(shè)x1,x2是一元二次方程x2+5x40的兩個(gè)根,若,則m_.10.(一題多法)已知方程2x2+mx40的一根為2,求它的另一根和m的值.11.已知關(guān)于x的方程x22(k1)x+k20有兩個(gè)實(shí)數(shù)根x1,x2.(1)求k的取值范圍;(2)若,求k的值.12.已知一元二次方程x2+3x10的兩根分別是x1,x2,請利用根與系數(shù)的關(guān)系求:(1);(2).13.已知x1,x2是一元二次方程(a6)x2+2ax+a0的兩個(gè)實(shí)數(shù)根.(1)是否存在實(shí)數(shù)a,使x1+x1x24+x2成立?若存在,求出a的值;若不存在,請你說明理由.(2)求使(x1+1)(x2+1)為負(fù)整數(shù)的實(shí)數(shù)a的整數(shù)值.14.已知兩個(gè)數(shù)的和為10,積為8,求這兩個(gè)數(shù).15.已知x1,x2是關(guān)于x的一元二次方程4x2+4(m1)x+m20的兩個(gè)非零實(shí)數(shù)根,問:x1和x2能否同號?若能同號,請求出相應(yīng)的m的取值范圍;若不能同號,請說明理由.參考答案1.A 2.C 3.C 4.D 5.D 6.4 7. 8.4 9.10 10.解法1:將方程的根x2代入方程,得2(2)2+m(2)40,m2.將m2代入原方程得2x2+2x40,即x2+x20,解得x12,x21.即方程的另一根為1.解法2:設(shè)方程的另一根為x1,則根據(jù)一元二次方程根與系數(shù)的關(guān)系,得,解得x11,m2.11.解:(1)由方程有兩個(gè)實(shí)數(shù)根,可得b24ac4(k1)24k20,解得.(2)依題意可得,x1+x22(k1),由(1)可知,2(k1)0.由,得2(k1)k21,解得k11(舍去),k23,k的值是3.12.解:由一元二次方程根與系數(shù)的關(guān)系知x1+x23,x1x21.(1).(2).點(diǎn)撥:若方程x2+px+q0的兩根分別是x1,x2,則x1+x2p,x1x2q.分別對和進(jìn)行恒等變形,將它們分別化為含有x1+x2和x1x2的代數(shù)式,然后求解.13解:(1)存在.x1,x2是一元二次方程(a6)x2+2ax+a0的兩個(gè)實(shí)數(shù)根,由根與系數(shù)的關(guān)系可知,. 一元二次方程(a6)x2+2ax+a0有兩個(gè)實(shí)數(shù)根,4a24(a6)a0,且a60,解得a0且a6.x1+x1x24+x2,x1x24+(x1+x2),即,解得a24,存在實(shí)數(shù)a,使x+x1x24+x2成立,a的值是24.(2),當(dāng)(x1+1)(x2+1)為負(fù)整數(shù)且a為整數(shù)時(shí),有a66,a63,a62,a61,a12,9,8,7,使(x1+1)(x2+1)為負(fù)整數(shù)的實(shí)數(shù)a的整數(shù)值有12,9,8,7. 14.解:設(shè)這兩個(gè)數(shù)分別為x1和x2,則有x1+x210,x1x28,所以以這兩個(gè)數(shù)為根的一元二次方程為x210x+80,解這個(gè)方程得, .答:這兩個(gè)數(shù)分別為和.點(diǎn)撥:本題也可以先設(shè)一個(gè)未知數(shù),然后列一元二次方程求解.15.解:因?yàn)殛P(guān)于x的一元二次方程4x2+4(m1)x+m20有兩個(gè)非零實(shí)數(shù)根,則有:4(m1)244m232m+160,且m20,且m0.又x1,x2是方程4x2+4(m1)x+m20的兩個(gè)實(shí)數(shù)根,由一元二次方程根與系數(shù)的關(guān)系,得x1+x2(m1),.假設(shè)x1,x2同號,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論