臺(tái)北市立陽明高級(jí)中學(xué)-OpticsonGraph.ppt_第1頁
臺(tái)北市立陽明高級(jí)中學(xué)-OpticsonGraph.ppt_第2頁
臺(tái)北市立陽明高級(jí)中學(xué)-OpticsonGraph.ppt_第3頁
臺(tái)北市立陽明高級(jí)中學(xué)-OpticsonGraph.ppt_第4頁
臺(tái)北市立陽明高級(jí)中學(xué)-OpticsonGraph.ppt_第5頁
已閱讀5頁,還剩40頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

Optics on Graphene,Gate-Variable Optical Transitions in Graphene Feng Wang, Yuanbo Zhang, Chuanshan Tian, Caglar Girit, Alex Zettl, Michael Crommie, and Y. Ron Shen, Science 320, 206 (2008).,Direct Observation of a Widely Tunable Bandgap in Bilayer Graphene Yuanbo Zhang, Tsung-Ta Tang, Caglar Girit1, Zhao Hao, Michael C. Martin, Alex Zettl1, Michael F. Crommie, Y. Ron Shen and Feng Wang (2009),Graphene (A Monolayer of Graphite),2D Hexagonal lattice,Electrically: High mobility at room temperature, Large current carrying capability Mechanically: Large Youngs modulus. Thermally: High thermal conductance.,Properties of Graphene,Quantum Hall effect, Barry Phase Ballistic transport, Klein paradox Others,Exotic Behaviors,Quantum Hall Effect,Y. Zhang et al, Nature 438, 201(2005),Optical Studies of Graphene,Optical microscopy contrast; Raman spectroscopy; Landau level spectroscopy.,Crystalline Structure of Graphite,Graphene,2D Hexagonal lattice,Band Structure of Graphene Monolayer,P.R.Wallace, Phys.Rev.71,622-634(1947),Band Structure of Monolayer Graphere,p-Electron Bands of Graphene Monolayer,Band Structure in Extended BZ,Band Structure near K Points,10 eV,Vertical optical transition,Van Hove Singularity,K,K,Monolayer,Bilayer,Band Structures of Graphene Monolayer and Bilayer near K,EF is adjustable,x,x,Exfoliated Graphene Monolayers and Bilayers,Monolayer,Bilayer,Reflecting microscope images.,K. S. Novoselov et al., Science 306, 666 (2004).,20 m,Raman Spectroscopy of Graphene,A.S.Ferrari, et al, PRL 97, 187401 (2006),(Allowing ID of monolayer and bilayer),Reflection Spectroscopy on Graphene,Experimental Arrangement,Doped Si,Graphene,Gold,290-nm Silica,OPA,Det,Infrared Reflection Spectroscopy to Deduce Absorption Spectrum,Differential reflection spectroscopy: Difference between bare substrate and graphene on substrate,A,B,-dR/R (RA-RB)/RA versus w,RA: bare substrate reflectivity RB: substrate + graphene reflectivity,20 m,dR/R = -Reh(w)s(w),h(w) from substrate s(w) from graphene: interband transitons free carrier absorption,Re s(w)/w: Absorption spectrum,Spectroscopy on Monolayer Graphene,Monolayer Spectrum,x,C: capacitance,Experimental Arrangement,Doped Si,Graphene,Gold,290-nm Silica,OPA,Det,Vg,Gate Effect on Monolayer Graphene,X,X,X,Small density of states close to Dirac point E = 0 Carrier injection by applying gate voltage can lead to large Fermi energy shift .,EF can be shifted by 0.5 eV with Vg 50 v; Shifting threshold of transitions by 1 eV,If Vg = Vg0 + Vmod, then should be a maximum at,Vary Optical Transitions by Gating,Laser beam,Vary gate voltage Vg.,Measure modulated reflectivity due to Vmod at V,( Analogous to dI/dV measurement in transport),Results in Graphene Monolayer,= 350 meV,The maximum determines Vg for the given EF.,Mapping Band Structure near K,For different w, the gate voltage Vg determined from maximum is different, following the relation ,Slope of the line allows deduction of slope of the band structure (Dirac cone) ,2D Plot of Monolayer Spectrum,Experiment,Theory,D(dR/R) (dR/R) 60V -(dR/R) -50V,Vg = 0,Strength of Gate Modulation,Bilayer Graphene (Gate-Tunable Bandgap),Band Structure of Graphene Bilayer,For symmetric layers, D = 0 For asymmetric layer, D 0,E. McCann, V.I.Falko, PRL 96, 086805 (2006);,Doubly Gated Bilayer,Asymmetry: D D (Db + Dt)/2 0 Carrier injection to shift EF: F dD = (Db - Dt),Sample Preparation,Effective initial bias due to impurity doping,Transport Measurement,Maximum resistance appears at EF = 0,Lowest peak resistance corresponds to Db = Dt = 0 .,Optical Transitions in Bilayer,I: Direct gap transition (tunable, 250 meV) II, IV: Transition between conduction/valence bands (400 meV, dominated by van Hove singularity) III, V: Transition between conduction and valence bands (400 meV, relatively weak) If dEF=0, then II and IV do not contribute,Bandstructure Change Induced by,Transitions II & IV inactive Transition I active,x,x,IV,II,Differential Bilayer Spectra (dD = 0) (Difference between spectra of D0 and D=0),I,I,Larger bandgap stronger transition I because ot higher density of states,IV,Charge Injection without Change of Bandstructure (D fixed),x,dD = 0,dD 0,Transition IV becomes active Peak shifts to lower energy as D increases Transition III becomes weaker and shifts to higher energy as D increases.,IV,III,Difference Spectra for Different D between dD=0.15 v/nm and dD=0,Larger D,Bandgap versus D,D(dR/R) (dR/R) 60V -(dR/R) -50V,is comparable to dR/R in value,Strength of Gate Modulation,Summary,Grahpene exhibits interesting optical behaviors:. Gate bias can significantly modify optical transitions over a broad spectral range. Single gate bias shifts the Fermi level of monolayer graphene. Spectra provides information on bandstructure, allowing deduction of VF (slope of the Dirac cone in the bandstructure). Double gate bias tunes the band

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論