機械加工@中英文翻譯@外文翻譯_第1頁
機械加工@中英文翻譯@外文翻譯_第2頁
機械加工@中英文翻譯@外文翻譯_第3頁
機械加工@中英文翻譯@外文翻譯_第4頁
機械加工@中英文翻譯@外文翻譯_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1 1 TOOL WEAR MECHANISMS ON THE FLANK SURFACE OF CUTTING INSERTS FOR HIGH SPEED WET MACHINING 5.1 Introduction Almost every type of machining such as turning, milling, drilling, grinding., uses a cutting fluid to assist in the cost effective production of pa rts as set up standard required by the producer 1. Using coolant with some cutting tools material causes severe failure due to the lack of their resistance to thermal shock (like AL2O3 ceramics), used to turn steel. O ther cutting tools materials like cub ic boron nitride (C BN) can be used without coolant, due to the type of their function. The aim of using C BN is to raise the temperature of the workpice to high so it locally softens and can be easily machined. The reasons behind using cutting fluids can be summarized as follows. Extending the cutting tool life achieved by reducing heat generated and as a result less wear rate is achieved. It will also eliminate the heat from the shear zone and the formed chips. Cooling the work piece of high quality materia l under operation plays an important role since thermal distortion of the surface and subsurface damage is a result of excessive heat that must be eliminated or largely reduced to produce a high quality product. Reducing cutting forces by its lubricating e ffect at the contact interface region and washing and cleaning the cutting region during machining from small chips. The two main reasons for using cutting fluids are cooling and lubrication. Cutting Fluid as a Coolant: The fluid characteristics and condit ion of use determine the coolant action of the cutting fluid, which improves the heat transfer at the shear zone between the cutting edge, work piece, and cutting fluid. The properties of the coolant in this case must include a high heat capacity to carry away heat and good thermal conductivity to absorb the heat from the cutting region. The water -based coolant emulsion with its excellent high heat capacity is able to reduce tool wear 44. Cutting Fluid as a Lubricant: The purpose is to reduce friction bet ween the cutting edge, rake face and the work piece material or reducing the cutting forces (tangential component). As the friction drops the heat generated is dropped. As a result, the cutting tool wear rate is reduced and the surface finish is improved. 2 2 Cutting Fluid Properties Free of perceivable odor Preserve clarity throughout life Kind and unirritated to skin and eyes. Corrosion protection to the machine parts and work piece. Cost effective in terms off tool life, safety, dilution ratio, and fluid life. 1 5.1.1 Cutting Fluid Types There are two major categories of cutting fluids Neat Cutting Oils Neat cutting oils are poor in their coolant characteristics but have an excellent lubricity. They are applied by flooding the work area by a pump and re -circulated through a filter, tank and nozzles. This type is not diluted by water, and may contain lubricity and extreme-pressure additives to enhance their cutting performance properties. The usage of this type has been declining for their poor cooling ability, causing fire risk, proven to cause health and safety risk to the operator 1. Water Based or Water Soluble Cutting Fluids This group is subdivided into three categories: 1. Emulsion mineral soluble white- milky color as a result of emuls ion of oil in water. Contain from 40%-80% mineral oil and an emulsifying agent beside corrosion inhibitors, beside biocide to inhibit the bacteria growth. 2. Micro emulsion semi-synthetic invented in 1980s, has less oil concentration and/or higher emulsifier ratio 10%-40% oil. Due to the high levels of emulsifier the oil droplet size in the fluid are smaller which make the fluid more translucent and easy to see the work piece during operation. Other important benefit is in its ability to emulsify any leakage of oil from the machine parts in the cutting fluid, a corrosion inhibitors, and bacteria control. 3. Mineral oil free synthetic is a mix of chemicals, water, bacteria control, corrosion inhibitors, and dyes. Does not contain any mineral oils, and provides good visibility 3 3 .23 to the work piece. bare in mind that the lack of mineral oil in this type of cutting fluid needs to take more attention to machine parts lubrication since it should not leave an oily film on the machine parts, and might cause seals degradation due the lack of protection. 5.1.2 Cutting Fluid Selection Many factors influence the selection of cutting fluid; mainly work piece material, type of machining operation, machine tool parts, paints, and seals. Table 5-1 prepared at the machine tool industry research association 2 provides suggestions on the type of fluid to be used. 5.1.3 Coolant Management To achieve a high level of cutting fluids performance and cost effectiveness, a coolant recycling system should be installed in the factory. This system will reduce the amount of new purchased coolant concentrate and coolant disposable, which will reduce manufacturing cost. It either done by the company itself or be rented out, depends on the budget and management policy of the company 1. Table 5-1 Guide to the selection of cutting fluids for general workshop applications. Machining operation Workpiece material Free machining and low - carbon steels Medium- Carbon steels High Carbon and alloy steels Stainless and heat treated resistant alloys Grinding C lear type soluble oil, semi synthetic or chemical grinding fluid Turning General purpose, soluble oil, semi synthetic or synthetic fluid Extreme-pressure soluble oil, semi-synthetic or synthetic fluid Milling General purpose, soluble oil, semi synthetic or synthetic fluid Extreme- pressure soluble oil, semi- synthetic or synthetic fluid Extreme-pressure soluble oil, semi-synthetic or synthetic fluid(neat cutting oils may be necessary) 4 4 Drilling Extreme- pressure soluble oil, semi- synthetic or synthetic fluid Gear Shapping Extreme-pressure soluble oil, semi-synthetic or synthetic fluid Neat-cutting oils preferable Hobbing Extreme-pressure soluble oil, semi-synthetic or synthetic fluid (neat cutting oils may be preferable) Neat-cutting oils preferable Bratching Extreme-pressure soluble oil, semi-synthetic or synthetic fluid (neat cutting oils may be preferable) Tapping Ex reme-pressure soluble oil, semi-synthetic or synthetic fluid(neat cutting oils may be necessary) Neat-cutting oils preferable Note: some entreis deliberately extend over two or more columns, indicating a wide range of possible applications. Other entries are confined to a specific class of work material. A dopt ed f rom E dw ard and Wright 2 5.2 Wear Mechanisms Under Wet High Speed Machining It is a common belief that coolant usage in metal cutting reduces cutting temperature and extends tools life. However, this research showed that this is not necessarily true to be generalized over cutting inserts materials. S imilar research was carried out on different cutting inserts materials and cutting condit ions supporting our results. Gu et al 36 have recorded a difference in tool wear mechanisms between dry and wet cutting of C 5 milling inserts. Tonshoff et al 44 also exhibited different wear mechanisms on AL2O3/TiC inserts in machining AS TM 5115, when using coolants emuls ions compared to dry cutting. In addition, Avila and Abrao 20 experienced difference in wear mechanisms activated at the flank side, when using different coolants in t esting AL2O3 lTiC tools in machining AIS I4340 steel. The wear mechanisms and the behavior of the cutting inserts studied in this research under wet high speed- machining (WHSM) 5 5 condition is not fully understood. Therefore, it was the attempt of this research to focus on the contributions in coating development and coating techniques of newly developed materials in order to upgrade their performance at tough machining conditions. This valuable research provides insight into production timesavings and increase in profitability. Cost reductions are essential in the competitive global economy; thus protecting local markets and consisting in the search of new ones. 5.3 Experimental Observations on Wear Mechanisms of Un-Coated Cemented Carbide C utting Inserts in Hig h Speed Wet Machining In this section, the observed wear mechanisms are presented of uncoated cemented carbide tool (KC313) in machining AS TM 4140 steel under wet condition. The overall performance of cemented carbide under using emulsion coolant has been improved in terms of extending tool life and reducing machining cost. Different types of wear mechanisms were activated at flank side of cutting inserts as a result of using coolant emuls ion during machining processes. This was due to the effect of coolant in reducing the average temperature of the cutting tool edge and shear zone during machining. As a result abrasive wear was reduced leading longer tool life. The materials of cutting tools behave differently to coolant because of their varied resistance to thermal shock. The following observations recorded the behavior of cemented carbide during high speed machining under wet cutting. F igure 5-1 shows the flank side of cutting inserts used at a cutting speed of 180m/min. The S EM images were recorded after 7 minutes of machining. It shows micro-abrasion wear, which identified by the narrow grooves along the flank side in the direction of metal flow, supported with similar observations documented by Barnes and P ashby 41 in testing through-coolant-drilling inserts of aluminum/S iC metal matrix composite. S ince the cutting edge is the weakest part of the cutting insert geometry, edge fracture started first due to the early non-smooth engagement between the tool and the work piece material. Also, this is due to stress concentrations that might lead to a cohesive failure on the transient filleted flank cutting wedge region 51, 52. The same image of micro -adhesion wear can be seen at the side and tool indicated by the half cone 27 shape on the side of cutting too l. To investigate further, a zoom in view was taken at 6 6 the flank side with a magnification of 1000 times and presented in F igure 5 -2A. It shows clear micro-abrasion wear aligned in the direction of metal flow, where the cobalt binder was worn first in a higher wear rate than WC grains which protruded as big spherical droplets. F igure 5-2B provides a zoom- in view that was taken at another location for the same flank side. Thermal pitting revealed by black spots in different depths and micro-cracks, propagated in mult i directions as a result of using coolant. Therefore, theii ial pitting, micro -adhesion and low levels of micro-abrasion activated under wet cutting; while high levels of micro -abrasion wear is activated under dry cutting (as presented in the previous Chapter). F igure 5-3A was taken for a cutting insert machined at 150mlmin. It shows a typical micro-adhesion wear, where quantities of chip metal were adhered at the flank side temporarily. Kopac 53 exhibited similar finding when testing HSS- TiN drill inserts in drilling S AE1045 steel. This adhered metal would later be plucked away taking grains of WC and binder from cutting inserts material and the process continues. In order to explore other types of wear that might exist, a zoom- in view with magnification of 750 times was taken as shown in F igure5 -3B. F igure 5-3B show two forms of wears; firstly, micro-thermal cracks indicated by perpendicular cracks located at the right side of the picture, and supported with similar findings of Deamley and Trent 27. Secondly, micro-abrasion wear at the left side of the image where the WC grains are to be plucked away after the cobalt binder was severely destroyed by micro-abrasion. Cobalt binders are small grains and WC is the big size grains. The severe distort ion of the binder along with the WC grains might be due to the activation of micro-adhesion and micro-abrasion F igure 5-1 S EM image of (KC313) showing micro abrasion and micro -adhesion (wet). 7 7 SEM micrographs of (KC313) at 180m/min showing micro -abrasion where cobalt binder was worn first leaving protruded WC spherical droplets (wet). (a) SEM micrographs of (KC313) at 180m/min showing thermal pitting (wet). F igure 5-2 Magnified views of (KC313) under wet cutting: (a) S EM micrographs of (KC313) at 180mlmin showing micro-abrasion where cobalt binder was worn first leaving protruded WC spherical droplets (wet ), (b) S EM micrographs of (KC313) at 180.m/min showing thermal pitting (wet ). SEM image showing micro-adhesion wear mechanism under 150m/min (wet). 8 8 (a) SEM image showing micro-thermal cracks, and micro-abrasion. F igure 5-3 Magnified views of (KC313) at 150m/min (wet): (a) S EM image showing micro-adhesion wear mechanism under 150m/min (wet), (b) S EM image showing micro- fatigue cracks, and micro-abrasion (wet). Wear at the time of cutting conditions of speed and coolant introduction. Therefore, micro- fatigue, micro-abrasion, and micro-adhesion wear mechanis ms are activated under wet condition, while high levels of micro -abrasion were observed under dry one. Next, F igure 5-4A was taken at the next lower speed (120m/min). It shows build up edge (BUE) that has sustained its existence throughout the life of the cutting tool, similar to Huang 13, Gu et al 36 and Venkatsh et al 55. This BUE has protected the tool edge and extended its life. Under dry cutting BUE has appeared at lower speeds (90 and 60 m/ min), but when introducing coolant BUE started to develop at higher speeds, This is due to the drop in shear zone temperature that affected the chip metal flow over the cutting tool edge, by reducing the ductility to a level higher than the one existing at dry condition cutting. As a result, chip metal starts accumulating easier at the interface between metal chip flow, cutting tool edge and crater surface to form a BUE. In addition to BUE formation, micro-abrasion wear was activated at this speed indicated by narrow grooves. To explore the possibility of other wear mechanisms a zoom- in view with a magnification of 3500 times was taken and shown in F igure 5 -4B. Micro- fatigue is evident by propagated cracks in the image similar to Deamley and Trent 27 finding. F urthermore, F igure 5-4B shows indications of micro-abrasion wear, revealed by the abrasion of cobalt binder and the remains of big protruded WC grains. However, the micro-abrasion appeared at this speed of 120m/min is less severe than the same type of micro -wear observed at 150 9 9 m/min speed, supported with Barnes 41 similar findings. Therefore, micro-abrasion, BUE and micro- fatigue were activated under wet condition while, adhesion, high levels micro-abrasion, and no BUE were under dry cutting. SEM im age of (KC313) showing build up edge under 120m/min (wet). (a) SEM im age of (KC3 13) showing micro-fatigue, and micro-abrasion (wet). F igure 5-4 S EM images o f (KC313) at 120m/min (wet), (a) S EM image of (KC313). showing build up edge, (b) S EM image of (K C 313) showing micro-fatigue and micro-abrasion 33 Figure 5-5 is for a cutting tool machined at 90m/min, that presents a good capture of one stage of tool life after the BUE has been plucked away. The bottom part of the flank side shows massive metal adhesion from the work piece material. The upper part of the figure at the edge shows edge fracture. To stand over the reason of edge fracture, the zoom- in view with magnification of 2000 times is presented in F igure 5-6A. The micro- fatigue crack image can be seen as well as micro-attrit ion revealed by numerous holes, and supported with Lim et al 31 observations on HSS- TiN inserts. As a result of BUE fracture from t he cutting tool edge, small quantities from the cutting tool material is plucked away leaving behind numerous holes. F igure 5-6B is another zoom- in view of the upper part of flank side with a magnification of 1000 times and shows micro -abrasion wear indicated by the narrow grooves. F urthermore, the exact type of micro - wear mechanism appeared at the flank side under 60 m/min. Therefore, in comparison with dry cutting at the cutting speed of 90 m/min and 60 m/min, less micro-abrasion, bigger BUE formation, and higher micro-attrition rate were activated. 10 10 Figure 5-5 SEM image showing tool edge after buildup edge was plucked away. SEM image showing micro-fatigue crack, and micro-attrition. (a) SEM image showing micro-abrasion. F igure 5-6 S EM images of (KC313) at 90m/min:(a) S EM image showing micro- fatigue crack, and micro-attrition, (b) S EM image showing micro-abrasion. 5.4 Experimental Observations on Wear Mechanisms of Coated Cemented Carbide with TiN- TiCN- TiN Coating in High Speed Wet 11 11 Machining Investigating the wear mechanisms of sandwich coating under wet cutting is presented in this section starting from early stages of wear. F igure 5 -7 shows early tool wear starting at the cutting edge when cutting at 410m/min. Edge fracture can be seen, it has started a t cutting edge due to non-smooth contact between tool, work piece, micro-abrasion and stress concentrations. To investigate further the other possible reasons behind edge fracture that leads to coating spalling, a zoom- in view with magnification of 2000 ti mes was taken and presented at F igure 5-8A. Coating fracture can be seen where fragments of TiN (upper coating) had been plucked away by metal chips. This took place as result of micro-abrasion that led to coating spalling. O n the other hand, the edge is t he weakest part of the cutting insert geometry and works as a stress concentrator might lead to a cohesive failure on the transient filleted flank cutting wedge region 51, 52. Both abrasion wear and stress concentration factor leave a non- uniform edge configuration at the micro scale after machining starts. Later small metal fragments started to adhere at the developed gaps to be later plucked away by the continuous chip movement as shown in F igure 5-8A. Another view of edge fracture was taken of the same cutting tool with a magnification of 2000 times as shown in F igure 5-8B. It presents fracture and crack at the honed tool edge. A schematic figure indicated by F igure 5-9, presented the progressive coated cutting inserts failure starting at the insert edge. It was also noticed during the inserts test that failure takes place first at the inserts edge then progressed toward the flank side. Consequently, a study on optimizing the cutting edge F igure 5-7 S EM image of (KC732) at 410m/min showing edge fractur e and micro-abrasion (wet). 12 12 SEM image showing edge fracture. (a) SEM image showing fracture and crack at the honed insert edge. F igure 5-8 S EM of (KC732) at 410m/min and early wear stage (wet): (a) S EM image showing edge fracture, (b) S EM image showing fr acture and crack at the honed insert edge. radius to improve coating adhesion, and its wear resistance, might be also a topic for future work. F igure 5-1.0A was taken after tool failure at a speed of 410m/min. It shows completely exposed substrate and severe sliding wear at the flank side. The coating exists at the crater surface and faces less wear than the flank side. Therefore it works as an upper protector for the cutting edge and most of the wear will take place at the flank side as sliding wear. F igu re 5-10B is a zoom- in view with magnification of 3500 times, and shows coating remaining at the flank side. Nonetheless, micro-abrasion and a slight tensile fracture in the direction of metal 13 13 chip flow. Ezugwa et al 28 and Kato 32 have exhibited simila r finding. However, the tensile fracture in this case is less in severity than what had been observed at dry cutting. This is due to the contribution of coolant in dropping the cutting temperature, which has reduced the plastic deformation at high temperature as a result. Hence, in comparison with the dry cutting at the same speed, tensile fracture was available with less severity and micro -abrasion/sliding. However, in dry cutting high levels of micro -abrasion, high levels of tensile fracture and sliding wear occurred. F igure 5- 11 was taken at early stages of wear at a speed of 360m/min. It shows sliding wear, coating spalling and a crack starting to develop between TiN and TiCN coating at honed tool edge. F igure5-12A shows nice presentation of what had bee n described earlier regarding the development of small fragments on the tool edge. The adhered metal fragments work along with micro -abrasion wear to cause coating spalling. SEM image showing sliding wear. (a) SEM image showing micro-abrasion and tensile fracture. F igure 5-10 S EM images of (KC732) at 410m/min after failure (wet): (a) S EM image showing sliding wear, (b) S EM image showing micro -abrasion 14 14 and tensile fracture. F igure 5-11 S EM image at early stage of wear of 360m/min (wet) showing coating and spalling developing crack between TiN and TiCN layers. The size of the metal chip adhered at the edge is almost 15g. Since it is unstable it will be later plucked away taking some fragments of coatings with it and the process continues. Another zoom in view with a magnification of 5000 times for the same insert is shown in F igure 5-12B indicating a newly developed crack between the coating layers. F igure 5-13A is taken of the same insert after failure when machining at 360m/min and wet condition. Coating spalling, and sliding wear can be seen and indicated by narrow grooves. In addition, initial development of notch wear can be seen at the maximum depth of cut. Further investigation is carried out by taking a zoom in view with a magnification of 2000 times as shown in F igure 5-13B. A clear micro-abrasion wear and micro- fatigue cracks were developed as shown, which extended deeply through out the entire three coating layers deep until the substrate. Therefore, in comparison with dry cutting, micro- fatigue crack, less tensile fracture, less micro-abrasion wear were activated at wet cutting. While micro - fatigue crack, high levels of micro-abrasion, and high levels of tensile fracture are distinguish the type of wear under dry condition at the same cutting spee d. Next, F igure 5-14A is taken for cutting tools machined at 310m/min. The results are similar to the previous inserts machined at 360m/ min, where adhesion of metal fragments occurred at the tool edge, sliding wear and coating spalling. In addition, the black spot appeared at the top of the figure on the crater surface is a void resulting from imperfections in the coating process. At this condition, the crater surface will be worn faster than the flank surface. 15 15 SEM image showing adhered metal fragments at tool edge. (a) SEM image showing developed crack between coating layers. F igure 5-12 S EM image of (KC732) at early wear 360m/min (wet): (a) S EM image showing adhered metal fragments at tool edge, (b) S EM image showing developed crack between coating layers. 16 16 (a) SEM image showing coating spalling and sliding wear after tool failure (b) SEM image showing micro-abrasion, and micro-fatigue cracks developed between coating layers Figure 5-13 SEM image of KC732 after failure machined at 360m/min (b) (wet): (a) S EM image showing coating spalling and sliding wear after tool failure, (b) S EM image showing micro-abrasion, and micro- fatigue cracks developed between coating layers. 17 17 翻譯 : 在高速潮濕機械加工條件下后刀面表層磨損機理 5.1 介紹 幾乎每類型用機器制造譬如轉(zhuǎn)動 , 碾碎 , 鉆井 , 研 ., 使用切口流體協(xié)助零件的有效的生產(chǎn)當(dāng)設(shè)定標(biāo)準由生產(chǎn)商 1 需要。 使用蓄冷劑以一些切割工具物質(zhì)起因嚴厲失敗由于缺乏他們的對熱沖擊的抵抗 (如 AL2.O3 陶瓷 ), 過去經(jīng)常轉(zhuǎn)動鋼。 其它切割工具材料象立方體硼氮化物 (C BN ) 可能被使用沒有蓄冷劑 , 由于類型他們的作用。 使用 C BN 的目標(biāo)將提高工件 的溫度對上流因此它變?nèi)岷秃彤?dāng)?shù)乜赡苋菀椎赜脵C器制造。 原因在使用切削液之后可能被總結(jié)如下。 . 延長切割工具壽命由減少達到熱量引起和結(jié)果較少磨損率達到。 它從剪區(qū)域和被形成的芯片并且將散熱。 . 冷卻高質(zhì)量材料工作片斷在操作之下充當(dāng)一個重要角色從表面的熱量畸變并且 表層下?lián)p傷是必須被消滅或主要使到產(chǎn)物一個高質(zhì)量產(chǎn)品降低過熱的結(jié)果。 . 減少切削力由它潤滑的作用在聯(lián)接口區(qū)域和清潔切削區(qū)在用機器制造從小芯片期間。 二個主要原因至于使用切口流體冷卻和潤滑。 切削液作為蓄冷劑 : 用途的可變的特征和情況確定切口流體的蓄冷劑行動 , 哪些改進熱傳遞在剪區(qū)域在先鋒之間 , 工作片斷 , 并且切口流體。 蓄冷劑的物產(chǎn)必須在這種情況下包括高熱容量使熱和好導(dǎo)熱性失去控制吸收熱從切口區(qū)域。 水基的蓄冷劑乳化液以它的優(yōu)秀高熱容量能減少工具穿戴 44 。 切削液作為潤滑劑 : 目的將減少摩擦 在先鋒之間 , 傾斜面孔和工作片斷材料或減少切口力量 (正切組分 ) 。 當(dāng)摩擦下降熱引起下降。 結(jié)果 , 切割工具穿戴率被減少并且表面結(jié)束被改進。 切削液物產(chǎn) 免于可感知的氣味 保存清晰在生活中 種類和 表層和孔。 腐蝕保護對機器零件和工作編結(jié)。 有效用術(shù)語工具生活 , 安全 , 稀釋比率 , 并且可變的生活。 1 5.1.1 切削液類型 切削液有二個主要類別 清潔的切削液 清潔的切削液是窮的在他們的蓄冷劑特征是很好的潤滑液。 他們由充斥應(yīng)用工作區(qū)域由泵浦和被重新傳布通過過濾器 , 坦克和噴管。 這 型由水不稀釋 , 并且可以包含潤滑和極壓力添加劑提高他們的切口表現(xiàn)。 這型用法降低他們的 18 18 冷卻的能力 , 避免火災(zāi)危險 , 保證操作員健康與安全風(fēng)險 1 。 . 水基于的或水溶切削液 這個小組被細分入三個類別 : 1. 乳化 液 礦 物 可溶 解 白色 乳 狀顏 色 由于 油乳 化 液在 水中 。 包 含從40%-80% 礦物油和一種乳化劑在腐蝕抗化劑旁邊 , 在生物殺傷劑旁邊禁止細菌成長。 2. 微乳化液 半合成 發(fā)明了在 80 年代之內(nèi) , 有較少油含量和或更高的乳化劑比率 10%-40% 油。 由于使流體更加透亮和容易看工作片斷在 操作期間的高水平乳化劑油小滴大小在流體更小。 其它重要好處是在它的能力乳化油任一漏出從機器零件在切口流體 , 腐蝕抗化劑 , 并且細菌控制。 3. 礦物油自由 合成物質(zhì) 是化學(xué)制品的混合 , 水 , 細菌控制 , 腐蝕抗化劑 , 并且染料。 不包含任何礦物油 , 并且提供好可見性 流動性需要采取對機器零件潤滑的更多注意因為它不應(yīng)該留下油膜在機器零件 , 并且可能導(dǎo)致密封嚴 5.1.2 切削液選擇 許多因素影響切削液的選擇 ; 主要工作材料片段 , 類型機器的操作 , 機械工具零件 , 油漆 , 并且密封。 表 5-1 準備在機械工 具產(chǎn)業(yè)研究協(xié)會提供建議在類型流體被使用。 5.1.3 蓄冷劑管理 達到一個高水平切削液表現(xiàn)和成本實效 , 蓄冷劑回收系統(tǒng)應(yīng)該被安裝在工廠。 這個系統(tǒng)將減少相當(dāng)數(shù)量新被購買的蓄冷劑集中和蓄冷劑一次性 , 哪些將減少制造費用。 它或者由公司做或被租賃 , 取決于公司預(yù)算和管理方針。 表 5-1 指南對于切口流體的選擇為一般車間應(yīng)用。 機器制造 操作 制件材料 自由用機器制造 并且低碳鋼 媒介碳鋼 高碳鋼 防 銹 和 熱處理 抗性合金 磨削 清楚的型可溶解油 , 半合成物質(zhì)或化學(xué)制品研的流體 車削 一般用途 , 可溶解油 , 半 綜合性或綜合性流體 極壓可溶解油 , 半合成或合成性流體 銑削 一般目的 , 可溶解油 ,半合成物質(zhì) 或 合 成 物 質(zhì)流體 極壓可溶物 油 ,半 合 成物質(zhì)或 綜合性流體 極壓可溶解油 , 半合成或綜合性流體(清潔的切削液可能是必要) 鉆削 極壓溶物油 ,半 合 成 物 質(zhì)或 綜合性流體 19 19 插齒 極壓溶解油 , 半合成或綜合性流體 整潔切口上油更好 滾齒 極壓可溶解油 , 半合成或合成性流體 (整潔的切口油也許是更好的 ) 清 潔 的 切削液 珩齒 極壓可溶解油 , 半合成或合成性流體 ( 清潔的切削液也許是更好的 ) 輕拍 極壓可溶解油 ,半合成或合成性流體 (切削液也許是必要的 ) 清潔的切削液更好 注 : 一些詞條故意地延伸二個或更多專欄 , 表明可能大范圍的應(yīng)用。 其它詞條被限制對工作材料具體組。 采用愛德華和懷特 5.2 機器磨損在濕高速用機器制造之下 這是共同的信仰 , 蓄冷劑用法在金屬切口減少切口溫度和延長工具生活。 但是 , 這研究表示 , 這不一定是真實的被推斷在切口插入物材料。 相似的研究被執(zhí)行了對不同的切口插入物材料和切口情況支持我們的結(jié)果。 顧 等 36 記錄了在工具磨損 機制上的 一個區(qū)別 在 C5 干燥 和濕切 口碾碎 的 插入物之 間。 Tonshoff(人名) 等 44 并且陳列了不同的穿戴機制在 AL2.O 3/TiC 插入物在用機器制造 AS TM 5115, 當(dāng)使用蓄冷劑乳化液與干燥切口比較了。 另外 , Avila 和 Abrao 20 體驗了在穿戴機制上的區(qū)別被激活在側(cè)面邊 , 當(dāng)使用不同的蓄冷劑在測試 AL2.O3lTiC 工具在用機器制造 AISI4340 鋼。磨損機制和切口插入物的行為被學(xué)習(xí)在這研究在濕上流速度用機器制造的 (WHSM) 情況下不充分地被了解。 所以 , 這是這研究嘗試集中于貢獻在涂層發(fā)展和最近被開發(fā)的材料涂層技術(shù)為了升級他們的表現(xiàn)在堅韌用機器制造的情況。 這可貴的研究提供在有利的洞察入生產(chǎn)省時和增量。在競爭全球性經(jīng)濟中成本的降低是根本的解決方法 ; 這樣保護了地方市場和尋找新的市場。 5.3 實驗性觀察在未上漆的用水泥涂的碳化物切口插入物穿戴機制在高速濕用機器制造 在這個 部分 , 被觀 察的 穿戴機 制被 提出 未上漆 的用 水泥涂 的碳 化物 工具(KC313) 在用機器制造 AS TM 4140 鋼在潮濕情況下。 用水泥涂的碳化物整體表現(xiàn)在使用乳化液蓄冷劑之下被改進了根據(jù)延伸的工具生活和減少用機器制造的費用。 不同的類 型穿戴機制被激活了在切口插入物的側(cè)面邊由于使用蓄 20 20 冷劑乳化液在用機器制造的過程期間。 這歸結(jié)于蓄冷劑的作用在減少切割工具邊緣和剪區(qū)域的平均溫度在用機器制造期間。 結(jié)果磨蝕穿戴被減少了主導(dǎo)的更長的工具生活。 切割工具材料不同地表現(xiàn)對蓄冷劑由于他們對熱沖擊的各種各樣的抵抗。 以下觀察記錄了用水泥涂的碳化物行為在高速用機器制造期間在濕切口之下。 圖 5-1 展示切口插入物的側(cè)面邊被使用以 180m/ 的切口速度分鐘。 S EM 圖象被記錄了在 7 分鐘用機器制造以后。 它顯示微磨蝕穿戴 , 哪些由狹窄的凹線辨認沿側(cè)面邊在金屬 流程的方向 , 支持以相似的觀察由巴恩斯和 Pashby(人名) 41 提供在鋁里測試的通過蓄冷劑鉆井插入物 S iC 金屬矩陣綜合。 因為先鋒是切口插入物幾何的最微弱的部份 , 漸近破裂開始的第一由于早期的非光滑的訂婚在工具和工作片斷材料之間。 并且 , 這歸結(jié)于也許導(dǎo)致言詞一致的失敗在瞬變被去骨切片的側(cè)面切口楔子區(qū)域的重音集中 51, 52 。 微黏附力穿戴的同樣圖象能看在邊和工具由半錐體表明 127 形狀在切割工具的邊。 調(diào)查進一步 , 徒升視線內(nèi)被采取了在 側(cè)面邊以 1000 次的放大和提出在圖 5-2.A 。 它顯示清楚的微磨蝕穿戴被排列在金屬流程的方向 , 那里鈷黏合劑比推出作為大球狀小滴的 WC 五谷被佩帶了首先在更高的穿戴率。 圖 5-2B 提供 a 迅速移動在被采取在其它地點為同樣側(cè)面邊的觀點。 熱量點蝕由黑斑點顯露用不同的深度和微小的裂縫 , 繁殖在多方向由于使用蓄冷劑。 所以 點蝕 , 微黏附力和微磨蝕的低水平被激活在濕切口之下 ; 當(dāng)高水平微磨蝕穿戴被激活在干燥切口之下 (依照被提出在早先章節(jié) ) 。 圖 5-3.A 被采取了為切口插入物用機器制造在 150mlmin 。 它顯示一身典型的微黏附力穿戴 , 那里 芯片金屬的數(shù)量臨時地被遵守了在側(cè)面邊。 Kopac 53 陳列了相似發(fā)現(xiàn)測試 HSS 錫鉆子插入物在鉆井 SAE1045 鋼里。 這種被遵守的金屬以后會被采拿走 WC 五谷并且黏合劑從切口插入材料并且過程繼續(xù)。 為了探索也許存在的其它類型穿戴 , a 迅速移動在看法以 750 次的放大被采取了依照被顯示在圖 5-3B 。 圖 5-3B 展示二穿戴方式 ; 首先 , 微熱量鎮(zhèn)壓由垂直鎮(zhèn)壓表明位于圖片的右邊 , 并且支持以 Deamley 和 Trent 27 的 相似的研究結(jié)果。 第二 , 微磨蝕穿戴在 WC 五谷將被采圖 象的左邊在鈷黏合劑被微磨蝕嚴厲地毀壞了之后。 鈷黏合劑是小五谷并且 WC 是大大小五谷。 黏合劑的嚴厲畸變與 WC 五谷一起也許歸結(jié)于微黏附力和微磨蝕的活化作用 21 21 圖 5-1 SEM 圖象 (KC313) 顯示微磨蝕和微黏附力 (濕 ) 。 (a) SEM 微寫器 (KC313) 在 180m/分鐘顯示微磨蝕何處鈷黏合劑被佩帶了首先留下被推出的 WC 球狀小滴 (濕 ) 。 (b) SEM 微寫器 (KC313) 在 180m/分鐘顯示熱量點蝕 (濕 ) 。 圖 5-2 被擴大化的看法 (KC313) 在濕切口之下 : (a) S EM 微寫器 (KC313) 在鈷黏合劑被佩帶首先留下被推出的 WC 球狀小滴的 180mlmin 顯示的微磨蝕 (濕 ), 22 22 (b) SEM 微寫器 (KC313) 在 180 。 m/分鐘顯示熱量點蝕 (濕 ) 。 (a) SEM 圖象顯示微黏附力穿戴機制在 150m/ 之下分鐘 (濕 ) 。 (b) (b) SEM 圖象顯示微熱量鎮(zhèn)壓 , 并且微磨蝕。 圖 5-3 被擴大化的看法 (KC313) 在 150m/分鐘 (濕 ): (a) S EM 圖象顯示微黏附力穿戴機制在 150m/ 之下分鐘 (濕 ), (b) S EM 圖象顯示微疲勞鎮(zhèn)壓 , 并且微磨蝕(濕 ) 。 佩帶在速度和蓄冷劑介紹的切口情況之時。 所以 , 微疲勞 , 微磨蝕 , 并且微黏附力穿戴機制被激活在濕情況下 , 當(dāng)高水平微磨蝕被觀察了在干燥一個之下。 其次 , 圖 5-4.A 被采取了以下更低的速度 (120m/分鐘 ) 。 它顯示組合邊緣 (BUE) 承受了它的存在在切割工具的生活中 , 相似與黃 13 , 顧 等 36 并且Venkatsh 等 55 。 這 BUE 保護了工具邊緣和延長它的生活。 在干燥切口之下 BUE 出現(xiàn)以更低的速度 (90 和 60 m/分鐘 ), 但當(dāng)介紹蓄冷劑 BUE 開始 顯現(xiàn)出以更高的速度 , 這歸結(jié)于下落在剪區(qū)域溫度影響芯片金屬流程在切割工具邊緣 , 由使延展性降低到一平實高級比那個存在在干燥條件切口。 結(jié)果 , 芯片金屬起動積累容易在接口在金屬芯片流程之間 , 切割工具邊緣和火山口浮出水 23 23 面形成 BUE 。 除 BUE 形成之外 , 微磨蝕穿戴被激活了以這速度由狹窄的凹線表明。 探索其它穿戴機制 a 的可能性迅速移動在看法以 3500 次的放大被采取了和被顯示了在圖 5-4B 。 微疲勞是顯然的由被繁殖的鎮(zhèn)壓在圖象相似與 Deamley 和Trent 27 發(fā)現(xiàn)。 此外 , 圖 5-4B 顯示微磨蝕穿戴的征兆 , 由鈷黏合劑磨蝕和大被推出的 WC 五谷遺骸的顯露。 但是 , 微磨蝕出現(xiàn)以這 120m/ 的速度分鐘比同樣型微佩帶觀察在 150 m/ 較不嚴厲的極小速度 , 支持以巴恩斯 41 個 相似的研究結(jié)果。 所以 , 微磨蝕 , BUE 和微疲勞被激活了在濕情況下當(dāng) , 黏附力 , 高水平微磨蝕 , 并且 BUE 不是在干燥切口之下。 (a) (KC313) 顯示組合邊緣的 SEM 圖象在 120m/ 之下分鐘 (濕 ) 。 (b) (KC3 13) 顯示微疲勞的 SEM 圖象 , 并且微磨蝕 (濕 ) 。 圖 5-4 SEM 圖象 (KC313) 在 120m/分鐘 (濕 ), (a) S EM 圖象 (KC313) 。 顯示組合邊緣 , (b) (KC313) 顯示微疲勞和微磨蝕的 SEM 圖象。 133 圖 5-5 是為切割工具用機器制造在 90m/分鐘 , 那禮物好 工具生活一個階段捕獲在 BUE 被采了之后。 側(cè)面旁邊展示巨型的金屬黏附力的底部從工作片斷材料。 圖的上部在邊緣顯示邊緣破裂。 站立在邊緣破裂原 24 24 因 , 迅速移動在看法以 2000 次的放大被提出在圖 5-6.A 。 微疲勞裂縫圖象能看并且微損耗由許多孔顯露 , 并且支持以 Lim 等 31 觀察在 HS S 錫插入物。 由于 BUE 破裂從切割工具邊緣 , 少量從切割工具材料是被采的忘記的許多孔。 圖 5-6B 是另迅速移動在景色的側(cè)面邊的上部以 1000 次的放大和顯示微磨蝕穿戴由狹窄的凹線表明。 此外 , 確切的型微佩帶機制出現(xiàn)在側(cè)面邊在 60 m/ 之下分鐘。 所以 , 與干燥切口比較以 90 m/ 的切口速度分鐘和 60 m/分鐘 , 較少微磨蝕 , 更大的 BUE 形成 , 并且更高的微損耗率被激活了。 圖 5-5 SEM 圖象顯示工具邊緣在積累邊緣以后被采了。 (a) SEM 圖象顯示微疲勞裂縫 , 并且微損耗。 25 25 (b) SEM 圖象顯示微磨蝕。 圖 5-6 S EM 圖象 (KC313) 在 90m/分鐘 :(a) S EM 圖象顯示微疲勞裂縫 , 并且微損耗 , (b) SEM 圖象顯示微磨蝕。 5.4 實驗性觀察在上漆的用水泥涂的碳化物穿戴機制與錫 TiCN 錫涂層在高速濕用機器制造 調(diào)查三明治涂層穿戴機制在濕切口之下被提出在這個部分從穿戴開始早期。 圖 5-7 展示早期工具穿戴開始在先鋒當(dāng)切開在 410m/分鐘。 邊緣破裂能被看見 , 它開始了在先鋒適當(dāng)非光滑的聯(lián)絡(luò)在工具之間 , 工作片斷 , 微磨蝕和重音集中。 調(diào) 查進一步其它可能的原因在那導(dǎo)致涂層剝落的邊緣破裂之后 , a 迅速移動在看法以 2000 次的放大被采取了和被提出了在圖 5-8.A 。 涂層破裂能被看見錫 (的地方上部涂層的 ) 片段被金屬芯片采了。 這結(jié)果微磨蝕的發(fā)生了那導(dǎo)致涂層剝落。 另一方面 , 邊緣是切口插入物幾何和工作的最微弱的部份如同重音集中器也許導(dǎo)致言詞一致的失敗在瞬變被去骨切片的側(cè)面切口楔子區(qū)域 51, 52 。 磨蝕穿戴和重音集中因素留下一種不均勻的邊緣配置在微標(biāo)度在用機器制造的開始以后。 最新小金屬片段開始遵守在被開發(fā)的空白被連續(xù)的芯片運動以后采依照被顯示在上圖 5-8.A 。 邊緣破裂其它觀點依照被顯示被采取了同樣切割工具以 2000 次的放大在上圖 5-8B 。 它提出破裂和裂縫在磨刀的工具邊緣。 一個概要圖由圖片表明 5-9, 提出了進步上漆的切口插入物失敗開始在插入物邊緣。 它并且被注意了在插入物期間測試 , 失敗發(fā)生在插入物首先漸近然后進步往側(cè)面邊。 結(jié)果 , 關(guān)于優(yōu)選先鋒的一項研究 26 26 圖 5-7 SEM 圖象 (KC732) 在 410m/極小的顯示的邊緣破裂和微磨蝕 (濕 ) (a) SEM 圖象顯示邊緣破裂。 (b) SEM 圖象顯示破

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論