




已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
MATLAB作業(yè)二參考答案1、試求下面線性代數(shù)方程的解析解與數(shù)值解,并檢驗解的正確性。【求解】求出A, A;B 兩個矩陣的秩,可見二者相同,所以方程不是矛盾方程,應該有無窮多解。 A=2,-9,3,-2,-1; 10,-1,10,5,0; 8,-2,-4,-6,3; -5,-6,-6,-8,-4;B=-1,-4,0; -3,-8,-4; 0,3,3; 9,-5,3;rank(A), rank(A B)ans =4 4用下面的語句可以求出方程的解析解,并可以驗證該解沒有誤差。 x0=null(sym(A);x_analytical=sym(A)B; syms a;x=a*x0 x0 x0+x_analyticalx = a+967/1535, a-943/1535, a-159/1535 -1535/1524*a, -1535/1524*a, -1535/1524*a -3659/1524*a-1807/1535,-3659/1524*a-257/1535,-3659/1524*a-141/1535 1321/508*a+759/1535, 1321/508*a-56/1535, 1321/508*a-628/1535 -170/127*a-694/307, -170/127*a+719/307, -170/127*a+103/307 A*x-Bans = 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0用數(shù)值解方法也可以求出方程的解,但會存在誤差,且與任意常數(shù)a 的值有關。 x0=null(A); x_numerical=AB; syms a;x=a*x0 x0 x0+x_numerical; vpa(x,10)ans = .2474402553*a+.1396556436, .2474402553*a-.6840666849, .2474402553*a-.1418420333-.2492262414*a+.4938507789,-.2492262414*a+.7023776988e-1,-.2492262414*a+.3853511888e-1 -.5940839201*a, -.5940839201*a, -.5940839201*a .6434420813*a-.7805411315, .6434420813*a-.2178190763,.6434420813*a-.5086089095-.3312192394*a-1.604263460, -.3312192394*a+2.435364854, -.3312192394*a+.3867176824 A*x-Bans = 1/18014398509481984*a, 1/18014398509481984*a, 1/18014398509481984*a -5/4503599627370496*a, -5/4503599627370496*a, -5/4503599627370496*a -25/18014398509481984*a, -25/18014398509481984*a, -25/18014398509481984*a 13/18014398509481984*a, 13/18014398509481984*a, 13/18014398509481984*a2、求解下面的聯(lián)立方程,并檢驗得出的高精度數(shù)值解(準解析解)的精度。【求解】給出的方程可以由下面的語句直接求解,經(jīng)檢驗可見,精度是相當高的。 x1,x2=solve(x12-x2-1=0,(x1-2)2+(x2-0.5)2-1=0,x1,x2)x1 =-1.3068444845633173592407431426632-1.2136904451605911320167045558746*sqrt(-1)-1.3068444845633173592407431426632+1.2136904451605911320167045558746*sqrt(-1)1.06734608580668971340859731280701.5463428833199450050728889725194x2 =-.76520198984055124633885565606586+3.1722093284506318231178646481143*sqrt(-1)-.76520198984055124633885565606586-3.1722093284506318231178646481143*sqrt(-1).139227666886861440483624988051411.3911763127942410521940863240803 norm(double(x1.2-x2-1 (x1-2).2+(x2-0.5).2-1)ans =6.058152713871457e-0313、用Jacobi、Gauss-Seidel迭代法求解方程組 ,給定初值為?!厩蠼狻浚壕帉慗acobi、Gauss-Seidel函數(shù)計算,function y=jacobi(a,b,x0)D=diag(diag(a); U=-triu(a,1); L=-tril(a,-1);B=D(L+U); f=Db;y=B*x0+f;n=1;while norm(y-x0)=1.0e-6 x0=y; y=B*x0+f; n=n+1;endn a=10,-1,-2;-1,10,-2;-1,-1,5;b=72;83;42; jacobi(a,b,0;0;0)n = 17ans = 11.0000 12.0000 13.0000function y=seidel(a,b,x0)D=diag(diag(a);U=-triu(a,1);L=-tril(a,-1);G=(D-L)U ;f=(D-L)b;y=G*x0+f; n=1;while norm(y-x0)=1.0e-6 x0=y; y=G*x0+f; n=n+1;endn seidel(a,b,0;0;0)n = 10ans = 11.0000 12.0000 13.00004555、假設已知一組數(shù)據(jù),試用插值方法繪制出區(qū)間內的光滑函數(shù)曲線,比較各種插值算法的優(yōu)劣。-2-1.7-1.4-1.1-0.8-0.5-0.20.10.40.711.3.10289.11741.13158.14483.15656.16622.17332.1775.17853.17635.17109.163021.61.92.22.52.83.13.43.744.34.64.9.15255.1402.12655.11219.09768.08353.07015.05786.04687.03729.02914.02236【求解】用下面的語句可以立即得出給定樣本點數(shù)據(jù)的三次插值與樣條插值,得出的結果如,可見,用兩種插值方法對此例得出的結果幾乎一致,效果均很理想。 x=-2,-1.7,-1.4,-1.1,-0.8,-0.5,-0.2,0.1,0.4,0.7,1,1.3,.1.6,1.9,2.2,2.5,2.8,3.1,3.4,3.7,4,4.3,4.6,4.9;y=0.10289,0.11741,0.13158,0.14483,0.15656,0.16622,0.17332,.0.1775,0.17853,0.17635,0.17109,0.16302,0.15255,0.1402,.0.12655,0.11219,0.09768,0.08353,0.07019,0.05786,0.04687,.0.03729,0.02914,0.02236;x0=-2:0.02:4.9;y1=interp1(x,y,x0,cubic);y2=interp1(x,y,x0,spline);plot(x0,y1,:,x0,y2,x,y,o)5、 假設已知實測數(shù)據(jù)由下表給出,試對在(0.1,0.1)(1.1,1.1)區(qū)域內的點進行插值,并用三維曲面的方式繪制出插值結果。00.10.20.30.40.50.60.70.80.911.10.1.83041.82727.82406.82098.81824.8161.81481.81463.81579.81853.823040.2.83172.83249.83584.84201.85125.86376.87975.89935.92263.94959.98010.3.83587.84345.85631.87466.89867.9284.963771.00451.05021.11.15290.4.84286.86013.88537.91865.959851.00861.06421.12531.19041.2571.32220.5.85268.88251.92286.973461.03361.10191.17641.2541.33081.40171.46050.6.86532.91049.968471.03831.1181.20461.29371.37931.45391.50861.53350.7.88078.943961.02171.11181.21021.3111.40631.48591.53771.54841.50520.8.89904.982761.0821.19221.30611.41381.50211.55551.55731.49151.3460.9.920061.02661.14821.27681.40051.50341.56611.56781.48891.31561.04541.943811.07521.21911.36241.48661.56841.58211.50321.3151.0155.624771.1.970231.12791.29291.44481.55641.59641.53411.34731.0321.61268.14763【求解】直接采用插值方法可以解決該問題,得出的插值曲面。 x,y=meshgrid(0.1:0.1:1.1);z=0.83041,0.82727,0.82406,0.82098,0.81824,0.8161,0.81481,0.81463,0.81579,0.81853,0.82304;0.83172,0.83249,0.83584,0.84201,0.85125,0.86376,0.87975,0.89935,0.92263,0.94959,0.9801;0.83587,0.84345,0.85631,0.87466,0.89867,0.9284,0.96377,1.0045,1.0502,1.1,1.1529;0.84286,0.86013,0.88537,0.91865,0.95985,1.0086,1.0642,1.1253,1.1904,1.257,1.3222;0.85268,0.88251,0.92286,0.97346,1.0336,1.1019,1.1764,1.254,1.3308,1.4017,1.4605;0.86532,0.91049,0.96847,1.0383,1.118,1.2046,1.2937,1.3793,1.4539,1.5086,1.5335;0.88078,0.94396,1.0217,1.1118,1.2102,1.311,1.4063,1.4859,1.5377,1.5484,1.5052;0.89904,0.98276,1.082,1.1922,1.3061,1.4138,1.5021,1.5555,1.5573,1.4915,1.346;0.92006,1.0266,1.1482,1.2768,1.4005,1.5034,1.5661,1.5678,1.4889,1.3156,1.0454;0.94381,1.0752,1.2191,1.3624,1.4866,1.5684,1.5821,1.5032,1.315,1.0155,0.62477;0.97023,1.1279,1.2929,1.4448,1.5564,1.5964,1.5341,1.3473,1.0321,0.61268,0.14763;x1,y1=meshgrid(0.1:0.02:1.1);z1=interp2(x,y,z,x1,y1,spline);surf(x1,y1,z1)axis(0.1,1.1,0.1,1.1,min(z1(:),max(z1(:)其實,若光需要插值曲面而不追求插值數(shù)值的話,完全可以直接采用MATLAB 下的shading interp 命令來實現(xiàn)??梢?,這樣的插值方法更好,得出的插值曲面更光滑。 surf(x,y,z); shading interp6、習題4和5給出的數(shù)據(jù)分別為一元數(shù)據(jù)和二元數(shù)據(jù),試用分段三次樣條函數(shù)和B樣條函數(shù)對其進行擬合?!厩蠼狻肯瓤紤]習題4,相應的三次樣條插值和B-樣條插值原函數(shù)與導數(shù)函數(shù)分別為: x=-2,-1.7,-1.4,-1.1,-0.8,-0.5,-0.2,0.1,0.4,0.7,1,1.3,.1.6,1.9,2.2,2.5,2.8,3.1,3.4,3.7,4,4.3,4.6,4.9;y=0.10289,0.11741,0.13158,0.14483,0.15656,0.16622,0.17332,.0.1775,0.17853,0.17635,0.17109,0.16302,0.15255,0.1402,.0.12655,0.11219,0.09768,0.08353,0.07019,0.05786,0.04687,.0.03729,0.02914,0.02236;S=csapi(x,y); S1=spapi(6,x,y);fnplt(S); hold on; fnplt(S1) Sd=fnder(S); Sd1=fnder(S1);fnplt(Sd), hold on; fnplt(Sd1)再考慮習題5中的數(shù)據(jù),原始數(shù)據(jù)不能直接用于樣條處理,因為meshgrid() 函數(shù)產(chǎn)生的數(shù)據(jù)格式與要求的ndgrid() 函數(shù)不一致,所以需要對數(shù)據(jù)進行處理,其中需要的x 和y 均應該是向量,而z 是原來z 矩陣的轉置,所以用下面的語句可以建立起三次樣條和B-樣條的插值模型,函數(shù)的表面圖所示,可見二者得出的結果很接近。 x,y=meshgrid(0:0.1:1.1);z=0.83041,0.82727,0.82406,0.82098,0.81824,0.8161,0.81481,0.81463,0.81579,0.81853,0.82304;0.83172,0.83249,0.83584,0.84201,0.85125,0.86376,0.87975,0.89935,0.92263,0.94959,0.9801;0.83587,0.84345,0.85631,0.87466,0.89867,0.9284,0.96377,1.0045,1.0502,1.1,1.1529;0.84286,0.86013,0.88537,0.91865,0.95985,1.0086,1.0642,1.1253,1.1904,1.257,1.3222;0.85268,0.88251,0.92286,0.97346,1.0336,1.1019,1.1764,1.254,1.3308,1.4017,1.4605;0.86532,0.91049,0.96847,1.0383,1.118,1.2046,1.2937,1.3793,1.4539,1.5086,1.5335;0.88078,0.94396,1.0217,1.1118,1.2102,1.311,1.4063,1.4859,1.5377,1.5484,1.5052;0.89904,0.98276,1.082,1.1922,1.3061,1.4138,1.5021,1.5555,1.5573,1.4915,1.346;0.92006,1.0266,1.1482,1.2768,1.4005,1.5034,1.5661,1.5678,1.4889,1.3156,1.0454;0.94381,1.0752,1.2191,1.3624,1.4866,1.5684,1.5821,1.5032,1.315,1.0155,0.62477;0.97023,1.1279,1.2929,1.4448,1.5564,1.5964,1.5341,1.3473,1.0321,0.61268,0.14763; x0=0.0:0.1:1; y0=x0; z=z;S=csapi(x0,y0,z); fnplt(S)figure; S1=spapi(5,5,x0,y0,z); fnplt(S1) S1x=fnder(S1,0,1); fnplt(S1x)figure; S1y=fnder(S1,0,1); fnplt(S1y)7、 重新考慮習題4中給出的數(shù)據(jù),試考慮用多項式插值的方法對其數(shù)據(jù)進行逼近,并選擇一個能較好擬合原數(shù)據(jù)的多項式階次。 【求解】可以選擇不同的多項式階次,例如選擇3,5,7,9,11,則可以對其進行多項式擬合,并繪制出曲線。 x=-2,-1.7,-1.4,-1.1,-0.8,-0.5,-0.2,0.1,0.4,0.7,1,1.3,.1.6,1.9,2.2,2.5,2.8,3.1,3.4,3.7,4,4.3,4.6,4.9;y=0.10289,0.11741,0.13158,0.14483,0.15656,0.16622,0.17332,.0.1775,0.17853,0.17635,0.17109,0.16302,0.15255,0.1402,.0.12655,0.11219,0.09768,0.08353,0.07019,0.05786,0.04687,.0.03729,0.02914,0.02236;x0=-2:0.02:4.9;p3=polyfit(x,y,3); y3=polyval(p3,x0);p5=polyfit(x,y,5); y5=polyval(p5,x0);p7=polyfit(x,y,7); y7=polyval(p7,x0);p9=polyfit(x,y,9); y9=polyval(p9,x0);p11=polyfit(x,y,11); y11=polyval(p11,x0);plot(x0,y3; y5; y7; y9; y11)從擬合的結果可以發(fā)現(xiàn),選擇5 次多項式就能較好地擬合原始數(shù)據(jù)。8、 假設習題4中給出的數(shù)據(jù)滿足原型,試用最小二乘法求出的值,并用得出的函數(shù)將函數(shù)曲線繪制出來,觀察擬合效果。 【求解】令則可以將原型函數(shù)寫成這時可以寫出原型函數(shù)為 f=inline(exp(-(x-a(1).2/2/a(2)2)/(sqrt(2*pi)*a(2),a,x);由原型函數(shù)則可以用下面的語句擬合出待定參數(shù)。這樣,擬合曲線得出的擬合效果是滿意的。 x=-2,-1.7,-1.4,-1.1,-0.8,-0.5,-0.2,0.1,0.4,0.7,1,1.3,.1.6,1.9,2.2,2.5,2.8,3.1,3.4,3.7,4,4.3,4.6,4.9;y=0.10289,0.11741,0.13158,0.14483,0.15656,0.16622,0.17332,.0.1775,0.17853,0.17635,0.17109,0.16302,0.15255,0.1402,.0.12655,0.11219,0.09768,0.08353,0.07019,0.05786,0.04687,.0.03729,0.02914,0.02236;a=lsqcurvefit(f,1,1,x,y)a =0.34605753554886 2.23400202798747 x0=-2:0.02:5; y0=f(a,x0);plot(x0,y0,x,y,o)9、 假設習題5中數(shù)據(jù)的原型函數(shù)為,試用最小二乘方法識別出的數(shù)值。 【求解】用下面的語句可以用最小二乘的得出 x,y=meshgrid(0.1:0.1:1.1);z=0.83041,0.82727,0.82406,0.82098,0.81824,0.8161,0.81481,0.81463,0.81579,0.81853,0.82304;0.83172,0.83249,0.83584,0.84201,0.85125,0.86376,0.87975,0.89935,0.92263,0.94959,0.9801;0.83587,0.84345,0.85631,0.87466,0.89867,0.9284,0.96377,1.0045,1.0502,1.1,1.1529;0.84286,0.86013,0.88537,0.91865,0.95985,1.0086,1.0642,1.1253,1.1904,1.257,1.3222;0.85268,0.88251,0.92286,0.97346,1.0336,1.1019,1.1764,1.254,1.3308,1.4017,1.4605;0.86532,0.91049,0.96847,1.0383,1.118,1.2046,1.2937,1.3793,1.4539,1.5086,1.5335;0.88078,0.94396,1.0217,1.1118,1.2102,1.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 寰枕融合的臨床護理
- 《2025知識產(chǎn)權許可協(xié)議技術合同》
- 《臨床護理操作技術》課件
- 生地會考試卷及答案萬維
- 上海高一期中試卷及答案
- 山東期中考試試卷及答案
- 深海打撈裝備的作業(yè)效能評估體系考核試卷
- 硬盤分區(qū)與數(shù)據(jù)恢復考核試卷
- 玩具工廠智能化升級考核試卷
- 玩具設計中的創(chuàng)意原型制作考核試卷
- 胃癌合并冠心病的護理查房
- 北師大版五年級數(shù)學下冊公開課《包裝的學問》課件
- 風電行業(yè)產(chǎn)品質量先期策劃手冊
- 社區(qū)日間照料中心運營方案
- 二年級下冊期末教學質量分析P的課件
- 初中數(shù)學北師大七年級下冊(2023年新編)綜合與實踐綜合與實踐-設計自己的運算程序 王穎
- 北師大版英語八年級下冊 Unit 4 Lesson 11 Online Time 課件(30張PPT)
- 可燃氣體報警系統(tǒng)安裝記錄
- 伸臂式焊接變位機設計總體設計和旋轉減速器設計畢業(yè)設計
- 血細胞儀白細胞五分類法原理和散點圖特征
- 形式發(fā)票格式2 INVOICE
評論
0/150
提交評論