運(yùn)籌學(xué)習(xí)題集(第一章).doc_第1頁(yè)
運(yùn)籌學(xué)習(xí)題集(第一章).doc_第2頁(yè)
運(yùn)籌學(xué)習(xí)題集(第一章).doc_第3頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

資料收集于網(wǎng)絡(luò) 如有侵權(quán)請(qǐng)聯(lián)系網(wǎng)站 刪除 謝謝 判 斷 題判斷正誤,如果錯(cuò)誤請(qǐng)更正第1章 線性規(guī)劃1. 任何線形規(guī)劃一定有最優(yōu)解。2. 若線形規(guī)劃有最優(yōu)解,則一定有基本最優(yōu)解。3. 線形規(guī)劃可行域無(wú)界,則具有無(wú)界解。4. 在基本可行解中非基變量一定為0。5. 檢驗(yàn)數(shù)j表示非基變量Xj增加一個(gè)單位時(shí)目標(biāo)函數(shù)值的改變量。6. minZ=6X1+4X2X1-2X=0,X2=07. 可行解集非空時(shí),則在極點(diǎn)上至少有一點(diǎn)達(dá)到最優(yōu)解.8. 任何線形規(guī)劃都可以化為下列標(biāo)準(zhǔn)型 Min Z=CjXj aijxj=b1, i=1,2,3,m Xj=0,j=1,2,3,,n:bi=0,i=1,2,3,m9. 基本解對(duì)應(yīng)的基是可行基.10. 任何線形規(guī)劃總可用大M 單純形法求解.11. 任何線形規(guī)劃總可用兩階段單純形法求解。12. 若線形規(guī)劃存在兩個(gè)不同的最優(yōu)解,則必有無(wú)窮多個(gè)最優(yōu)解。13. 兩階段中第一階段問(wèn)題必有最優(yōu)解。14. 兩階段法中第一階段問(wèn)題最優(yōu)解中基變量全部非人工變量,則原問(wèn)題有最優(yōu)解。15. 人工變量一旦出基就不會(huì)再進(jìn)基。16. 普通單純形法比值規(guī)則失效說(shuō)明問(wèn)題無(wú)界。17. 最小比值規(guī)則是保證從一個(gè)可行基得到另一個(gè)可行基。18. 將檢驗(yàn)數(shù)表示為=CBB-1A-的形式,則求極大值問(wèn)題時(shí)基本可行解是最優(yōu)解的充要條件為=0。19. 若矩陣B為一可行基,則B0。20. 當(dāng)最優(yōu)解中存在為0的基變量時(shí),則線形規(guī)劃具有多重最優(yōu)解。選擇題在下列各題中,從4個(gè)備選答案中選出一個(gè)或從5個(gè)備選答案中選出25個(gè)正確答案。第1章 線性規(guī)劃1. 線形規(guī)劃具有無(wú)界解是指:A可行解集合無(wú)界 B有相同的最小比值 C存在某個(gè)檢驗(yàn)數(shù)k0且aik=0(i=1,2,3,m) D 最優(yōu)表中所有非基變量的檢驗(yàn)數(shù)非0。2. 線形規(guī)劃具有多重最優(yōu)解是指:A 目標(biāo)函數(shù)系數(shù)與某約束系數(shù)對(duì)應(yīng)成比例 B最優(yōu)表中存在非基變量的檢驗(yàn)數(shù)為0 C可行解集合無(wú)界 D存在基變量等于03. 使函數(shù)Z=-X1+X2-4X3增加的最快的方向是: A (-1,1,-4) B(-1,-1,-4)C(1,1,4)D(1,-1,-4-)4. 當(dāng)線形規(guī)劃的可行解集合非空時(shí)一定 A包含原點(diǎn)X=(0,0,0) B有界C 無(wú)界D 是凸集5. 線形規(guī)劃的退化基本可行解是指 A基本可行解中存在為0的基變量 B非基變量為C非基變量的檢驗(yàn)數(shù)為0 D最小比值為06. 線形規(guī)劃無(wú)可行解是指 A進(jìn)基列系數(shù)非正 B有兩個(gè)相同的最小比值 C第一階段目標(biāo)函數(shù)值大于0 D用大M法求解時(shí)最優(yōu)解中含有非0的人工變量 E可行域無(wú)界7. 若線性規(guī)劃存在可行基,則 A一定有最優(yōu)解 B一定有可行解 C可能無(wú)可行解 D可能具有無(wú)界解 E全部約束是=的形式 8. 線性規(guī)劃可行域的頂點(diǎn)是 A可行解 B非基本解 C基本可行解 D最優(yōu)解 E基本解9. minZ=X1-2X2,-X1+2X2=5,2X1+X2=8,X1,X2=0,則 A有惟一最優(yōu)解 B有多重最優(yōu)解 C有無(wú)界解 D無(wú)可行解 E存在最優(yōu)解10. 線性規(guī)劃的約束條件為 X1+X2+X3=3 2X1+2X2+X4=4 X1,X2,X3,X4=0 則基本可行解是 A(0,0,4,3)B(0,0,3,4)C(3,4,0,0)D(3,0,0,-2) 計(jì)算題1.1 對(duì)于如下的線性規(guī)劃問(wèn)題 x5=0x2=0x2x1MinZ= X1+2X2s.t. X1+ X24 -X1+ X21X23X1, X20 in ruins 嚴(yán)重受損;破敗不堪的圖解如圖所示。三個(gè)約束對(duì)應(yīng)的松弛變量分別為x3、x4、x5,請(qǐng)選擇一個(gè)正確的答案填在相應(yīng)括號(hào)中。1、這個(gè)問(wèn)題的可行域?yàn)椋?);A、(OCBA) B、(EFH) C、(FGB) D、(BCEF)2、該問(wèn)題的最優(yōu)解為( );A、(F) B、(G) C、(H) D、(C)3、這個(gè)問(wèn)題的基礎(chǔ)解為( );A、(OABCDEFGH) B、(ABCDEH) C、(OABCEFGH) D、(CEFB)4、這個(gè)問(wèn)題的基礎(chǔ)可行解為( );A、(HEF) B、(BCEF) C、(FGB) D、(OABC)5、A點(diǎn)對(duì)應(yīng)的解中,小于零的變量為( ); A、(x2) B、(x4) C、(x3)6、F點(diǎn)對(duì)應(yīng)的基變量為( ); A、(x1 x2 x4) B、(x2 x3 x4) C、(x1 x4 x5) D、(x1 x3 x5)7、F點(diǎn)對(duì)應(yīng)的非基變量為( );A、(x1 x3) B、(x3 x5) C、(x2 x3) D、(x2 x4)8、從O到C的單純形疊代

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論