




已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
高中數(shù)學(xué)*常用公式及結(jié)論 * 高中數(shù)學(xué)常用公式及結(jié)論1 元素與集合的關(guān)系:, 2德摩根公式 :3包含關(guān)系4元素個數(shù)關(guān)系: 5集合的子集個數(shù)共有 個;真子集有個;非空子集有個;非空的真子集有個6二次函數(shù)的解析式的三種形式(1)一般式;(2)頂點式;(當已知拋物線的頂點坐標時,設(shè)為此式)(3)零點式;(當已知拋物線與軸的交點坐標為時,設(shè)為此式)(4)切線式:(當已知拋物線與直線相切且切點的橫坐標為時,設(shè)為此式)7解連不等式常有以下轉(zhuǎn)化形式8方程在內(nèi)有且只有一個實根,等價于或9閉區(qū)間上的二次函數(shù)的最值 二次函數(shù)在閉區(qū)間上的最值只能在處及區(qū)間的兩端點處取得,具體如下:(1)當a0時,若,則;,(2)當a0)(1),則的周期T=a;(2),或,則的周期T=2a;(3),則的周期T=3a;(4)且,則的周期T=4a;30分數(shù)指數(shù)冪 (1)(,且)(2)(,且)31根式的性質(zhì)(1)(2)當為奇數(shù)時,;當為偶數(shù)時,32有理指數(shù)冪的運算性質(zhì)(1) (2) (3)注: 若a0,p是一個無理數(shù),則ap表示一個確定的實數(shù)上述有理指數(shù)冪的運算性質(zhì),對于無理數(shù)指數(shù)冪都適用33指數(shù)式與對數(shù)式的互化式: 34對數(shù)的換底公式 : (,且,且, ) 對數(shù)恒等式:(,且, )推論 (,且, )35對數(shù)的四則運算法則:若a0,a1,M0,N0,則(1); (2) ;(3); (4) 36設(shè)函數(shù),記若的定義域為,則且;若的值域為,則,且37 對數(shù)換底不等式及其推廣:設(shè),且,則(1)(2)38 平均增長率的問題(負增長時)如果原來產(chǎn)值的基礎(chǔ)數(shù)為N,平均增長率為,則對于時間的總產(chǎn)值,有39數(shù)列的通項公式與前n項的和的關(guān)系:( 數(shù)列的前n項的和為)40等差數(shù)列的通項公式:;其前n項和公式為:41等比數(shù)列的通項公式:;其前n項的和公式為或42等比差數(shù)列:的通項公式為;其前n項和公式為:43分期付款(按揭貸款) :每次還款元(貸款元,次還清,每期利率為)44常見三角不等式(1)若,則(2) 若,則(3) 45同角三角函數(shù)的基本關(guān)系式 :,=,46正弦、余弦的誘導(dǎo)公式(奇變偶不變,符號看象限),47和角與差角公式 ;(平方正弦公式);=(輔助角所在象限由點的象限決定, )48二倍角公式及降冪公式 49 三倍角公式 50三角函數(shù)的周期公式 函數(shù),xR及函數(shù),xR(A,為常數(shù),且A0)的周期;函數(shù),(A,為常數(shù),且A0)的周期51正弦定理:(R為外接圓的半徑)52余弦定理;53面積定理(1)(分別表示a、b、c邊上的高)(2)(3)54三角形內(nèi)角和定理 在ABC中,有55 簡單的三角方程的通解 特別地,有 56最簡單的三角不等式及其解集 57實數(shù)與向量的積的運算律:設(shè)、為實數(shù),那么(1) 結(jié)合律:()=() ;(2)第一分配律:(+) =+;(3)第二分配律:(+)=+58向量的數(shù)量積的運算律:(1) = (交換律);(2)()= ()=();(3)(+)= +59平面向量基本定理 如果、是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任一向量,有且只有一對實數(shù)1、2,使得=1+2不共線的向量、叫做表示這一平面內(nèi)所有向量的一組基底60向量平行的坐標表示 設(shè)=,=,且,則 ()53 與的數(shù)量積(或內(nèi)積):=|61 的幾何意義:數(shù)量積等于的長度|與在的方向上的投影|的乘積62平面向量的坐標運算(1)設(shè)=,=,則+=(2)設(shè)=,=,則-= (3)設(shè)A,B,則(4)設(shè)=,則=(5)設(shè)=,=,則=63兩向量的夾角公式(=,=)64平面兩點間的距離公式 =(A,B)65向量的平行與垂直 :設(shè)=,=,且,則|= () =066線段的定比分公式 :設(shè),是線段的分點,是實數(shù),且,則()67三角形的重心坐標公式 ABC三個頂點的坐標分別為、,則ABC的重心的坐標是68點的平移公式 注:圖形F上的任意一點P(x,y)在平移后圖形上的對應(yīng)點為,且的坐標為69“按向量平移”的幾個結(jié)論(1)點按向量=平移后得到點(2) 函數(shù)的圖象按向量=平移后得到圖象,則的函數(shù)解析式為(3) 圖象按向量=平移后得到圖象,若的解析式,則的函數(shù)解析式為(4)曲線:按向量=平移后得到圖象,則的方程為(5) 向量=按向量=平移后得到的向量仍然為=70 三角形五“心”向量形式的充要條件設(shè)為所在平面上一點,角所對邊長分別為,則(1)為的外心(2)為的重心(3)為的垂心(4)為的內(nèi)心(5)為的的旁心71常用不等式:(1)(當且僅當ab時取“=”號)(2)(當且僅當ab時取“=”號)(3)(4)柯西不等式:(5)(6)(當且僅當ab時取“=”號)72極值定理:已知都是正數(shù),則有(1)若積是定值,則當時和有最小值;(2)若和是定值,則當時積有最大值(3)已知,若則有(4)已知,若則有73一元二次不等式,如果與同號,則其解集在兩根之外;如果與異號,則其解集在兩根之間簡言之:同號兩根之外,異號兩根之間;74含有絕對值的不等式 :當a 0時,有或75無理不等式(1) (2)(3)76指數(shù)不等式與對數(shù)不等式 (1)當時,; (2)當時,;77斜率公式 (、)78直線的五種方程 (1)點斜式 (直線過點,且斜率為)(2)斜截式 (b為直線在y軸上的截距)(3)兩點式 ()(、 ()兩點式的推廣:(無任何限制條件?。?4)截距式 (分別為直線的橫、縱截距,)(5)一般式 (其中A、B不同時為0)79兩條直線的平行和垂直 (1)若,;(2)若,且A1、A2、B1、B2都不為零,;80夾角公式 (1)(,,)(2)(,)直線時,直線l1與l2的夾角是81 到的角公式 (1)(,,)(2)(,)直線時,直線l1到l2的角是82四種常用直線系方程及直線系與給定的線段相交: (1)定點直線系方程:經(jīng)過定點的直線系方程為(除直線),其中是待定的系數(shù); 經(jīng)過定點的直線系方程為,其中是待定的系數(shù)(2)共點直線系方程:經(jīng)過兩直線,的交點的直線系方程為(除),其中是待定的系數(shù)(3)平行直線系方程:直線中當斜率k一定而b變動時,表示平行直線系方程與直線平行的直線系方程是(),是參變量(4)垂直直線系方程:與直線 (A0,B0)垂直的直線系方程是,是參變量(5)直線系與線段相交83點到直線的距離 :(點,直線:)84 或所表示的平面區(qū)域設(shè)直線,則或所表示的平面區(qū)域是:若,當與同號時,表示直線的上方的區(qū)域;當與異號時,表示直線的下方的區(qū)域簡言之,同號在上,異號在下若,當與同號時,表示直線的右方的區(qū)域;當與異號時,表示直線的左方的區(qū)域 簡言之,同號在右,異號在左85 或所表示的平面區(qū)域或所表示的平面區(qū)域是兩直線和所成的對頂角區(qū)域(上下或左右兩部分) 86 圓的四種方程(1)圓的標準方程 (2)圓的一般方程 (0)(3)圓的參數(shù)方程 (4)圓的直徑式方程 (圓的直徑的端點是、)87 圓系方程(1)過點,的圓系方程是,其中是直線的方程,是待定的系數(shù)(2)過直線:與圓:的交點的圓系方程是,是待定的系數(shù)(3) 過圓:與圓:的交點的圓系方程是,是待定的系數(shù)特別地,當時,就是表示兩圓的公共弦所在的直線方程88點與圓的位置關(guān)系:點與圓的位置關(guān)系有三種若,則點在圓外;點在圓上;點在圓內(nèi)89直線與圓的位置關(guān)系直線與圓的位置關(guān)系有三種():;90兩圓位置關(guān)系的判定方法:設(shè)兩圓圓心分別為O1,O2,半徑分別為r1,r2,;91圓的切線方程及切線長公式(1)已知圓若已知切點在圓上,則切線只有一條,其方程是 當圓外時, 表示過兩個切點的切點弦方程求切點弦方程,還可以通過連心線為直徑的圓與原圓的公共弦確定過圓外一點的切線方程可設(shè)為,再利用相切條件求k,這時必有兩條切線,注意不要漏掉平行于y軸的切線斜率為k的切線方程可設(shè)為,再利用相切條件求b,必有兩條切線(2)已知圓過圓上的點的切線方程為;斜率為的圓的切線方程為(3) 過圓外一點的切線長為92橢圓的參數(shù)方程是離心率,準線到中心的距離為,焦點到對應(yīng)準線的距離(焦準距) 通徑的一半(焦參數(shù)):93橢圓焦半徑公式及兩焦半徑與焦距構(gòu)成三角形的面積 ,;94橢圓的的內(nèi)外部(1)點在橢圓的內(nèi)部(2)點在橢圓的外部95 橢圓的切線方程 (1)橢圓上一點處的切線方程是 (2)過橢圓外一點所引兩條切線的切點弦方程是 (3)橢圓與直線相切的條件是96雙曲線的離心率,準線到中心的距離為,焦點到對應(yīng)準線的距離(焦準距) 通徑的一半(焦參數(shù)):焦半徑公式,兩焦半徑與焦距構(gòu)成三角形的面積97雙曲線的內(nèi)外部(1)點在雙曲線的內(nèi)部(2)點在雙曲線的外部98雙曲線的方程與漸近線方程的關(guān)系(1)若雙曲線方程為漸近線方程: (2)若漸近線方程為雙曲線可設(shè)為(3)若雙曲線與有公共漸近線,可設(shè)為(,焦點在x軸上,焦點在y軸上)(4) 焦點到漸近線的距離總是99 雙曲線的切線方程 (1)雙曲線上一點處的切線方程是 (2)過雙曲線外一點所引兩條切線的切點弦方程是 (3)雙曲線與直線相切的條件是100 拋物線的焦半徑公式拋物線焦半徑過焦點弦長101拋物線上的動點可設(shè)為P或 P,其中 102二次函數(shù)的圖象是拋物線:(1)頂點坐標為;(2)焦點的坐標為;(3)準線方程是103以拋物線上的點為圓心,焦半徑為半徑的圓必與準線相切;以拋物線焦點弦為直徑的圓,必與準線相切;以拋物線的焦半徑為直徑的圓必與過頂點垂直于軸的直線相切104 拋物線的切線方程(1)拋物線上一點處的切線方程是 (2)過拋物線外一點所引兩條切線的切點弦方程是 (3)拋物線與直線相切的條件是105兩個常見的曲線系方程(1)過曲線,的交點的曲線系方程是(為參數(shù))(2)共焦點的有心圓錐曲線系方程,其中當時,表示橢圓; 當時,表示雙曲線106直線與圓錐曲線相交的弦長公式 或(弦端點A,由方程 消去y得到,,為直線的傾斜角,為直線的斜率,) 107圓錐曲線的兩類對稱問題(1)曲線關(guān)于點成中心對稱的曲線是(2)曲線關(guān)于直線成軸對稱的曲線是特別地,曲線關(guān)于原點成中心對稱的曲線是 曲線關(guān)于直線軸對稱的曲線是 曲線關(guān)于直線軸對稱的曲線是 曲線關(guān)于直線軸對稱的曲線是 曲線關(guān)于直線軸對稱的曲線是108圓錐曲線的第二定義:動點M到定點F的距離與到定直線的距離之比為常數(shù),若,M的軌跡為橢圓;若,M的軌跡為拋物線;若,M的軌跡為雙曲線109證明直線與直線的平行的思考途徑(1)轉(zhuǎn)化為判定共面二直線無交點;(2)轉(zhuǎn)化為二直線同與第三條直線平行;(3)轉(zhuǎn)化為線面平行;(4)轉(zhuǎn)化為線面垂直;(5)轉(zhuǎn)化為面面平行110證明直線與平面的平行的思考途徑(1)轉(zhuǎn)化為直線與平面無公共點;(2)轉(zhuǎn)化為線線平行;(3)轉(zhuǎn)化為面面平行111證明平面與平面平行的思考途徑(1)轉(zhuǎn)化為判定二平面無公共點;(2)轉(zhuǎn)化為線面平行;(3)轉(zhuǎn)化為線面垂直112證明直線與直線的垂直的思考途徑(1)轉(zhuǎn)化為相交垂直;(2)轉(zhuǎn)化為線面垂直;(3)轉(zhuǎn)化為線與另一線的射影垂直;(4)轉(zhuǎn)化為線與形成射影的斜線垂直113證明直線與平面垂直的思考途徑(1)轉(zhuǎn)化為該直線與平面內(nèi)任一直線垂直;(2)轉(zhuǎn)化為該直線與平面內(nèi)相交二直線垂直;(3)轉(zhuǎn)化為該直線與平面的一條垂線平行;(4)轉(zhuǎn)化為該直線垂直于另一個平行平面114證明平面與平面的垂直的思考途徑(1)轉(zhuǎn)化為判斷二面角是直二面角;(2)轉(zhuǎn)化為線面垂直;(3) 轉(zhuǎn)化為兩平面的法向量平行115空間向量的加法與數(shù)乘向量運算的運算律(1)加法交換律:=(2)加法結(jié)合律:()=()(3)數(shù)乘分配律:()=116平面向量加法的平行四邊形法則向空間的推廣始點相同且不在同一個平面內(nèi)的三個向量之和,等于以這三個向量為棱的平行六面體的以公共始點為始點的對角線所表示的向量117共線向量定理對空間任意兩個向量、 ( ),存在實數(shù)使=三點共線、共線且不共線且不共線118共面向量定理 向量與兩個不共線的向量、共面的存在實數(shù)對,使推論 空間一點P位于平面MAB內(nèi)的存在有序?qū)崝?shù)對,使,或?qū)臻g任一定點O,有序?qū)崝?shù)對,使119對空間任一點和不共線的三點A、B、C,滿足(),則當時,對于空間任一點,總有P、A、B、C四點共面;當時,若平面ABC,則P、A、B、C四點共面;若平面ABC,則P、A、B、C四點不共面四點共面與、共面(平面ABC)120空間向量基本定理 如果三個向量、不共面,那么對空間任一向量,存在一個唯一的有序?qū)崝?shù)組x,y,z,使xyz推論 設(shè)O、A、B、C是不共面的四點,則對空間任一點P,都存在唯一的三個有序?qū)崝?shù)x,y,z,使121射影公式已知向量=和軸,是上與同方向的單位向量作A點在上的射影,作B點在上的射影,則122向量的直角坐標運算設(shè),則(1) ;(2) ;(3) (R);(4) ;123設(shè)A,B,則= 124空間的線線平行或垂直設(shè),則;125夾角公式 設(shè),則推論 ,此即三維柯西不等式126 正棱錐的側(cè)面與底面所成的角為,則特別地,對于正四面體每兩個面所成的角為,有127異面直線所成角=(其中()為異面直線所成角,分別表示異面直線的方向向量)128直線與平面所成角(為平面的法向量)129若所在平面與過若的平面成的角,另兩邊,與平面成的角分別是、,為的兩個內(nèi)角,則特別地,當時,有130若所在平面與過的平面成的角,另兩邊,與平面成的角分別是、,為的兩個內(nèi)角,則特別地,當時,有131二面角的平面角(根據(jù)具體圖形確定是銳角或是鈍角)或(,為平面,的法向量)132三余弦定理設(shè)AC是內(nèi)的任一條直線,AD是的一條斜線AB在內(nèi)的射影,且BDAD,垂足為D,設(shè)AB與(AD)所成的角為, AD與AC所成的角為, AB與AC所成的角為則133 三射線定理若夾在平面角為的二面角間的線段與二面角的兩個半平面所成的角是,與二面角的棱所成的角是,則有 ;(當且僅當時等號成立)134空間兩點間的距離公式 若A,B,則=135 點到直線距離(點在直線上,為直線的方向向量, =)136異面直線間的距離 (是兩異面直線,其公垂向量為,分別是上任一點,為間的距離)137點到平面的距離 (為平面的法向量,是的一條斜線段)138異面直線上兩點距離公式 () (兩條異面直線a、b所成的角為,其公垂線段的長度為h在直線a、b上分別取兩點E、F,,) 139三個向量和的平方公式 140 長度為的線段在三條兩兩互相垂直的直線上的射影長分別為,夾角分別為,則有(立體幾何中長方體對角線長的公式是其特例)141 面積射影定理 (平面多邊形及其射影的面積分別是、,它們所在平面所成銳二面角的為)142 斜棱柱的直截面已知斜棱柱的側(cè)棱長是,側(cè)面積和體積分別是和,它的直截面的周長和面積分別是和,則;143作截面的依據(jù)三個平面兩兩相交,有三條交線,則這三條交線交于一點或互相平行144棱錐的平行截面的性質(zhì)如果棱錐被平行于底面的平面所截,那么所得的截面與底面相似,截面面積與底面面積的比等于頂點到截面距離與棱錐高的平方比(對應(yīng)角相等,對應(yīng)邊對應(yīng)成比例的多邊形是相似多邊形,相似多邊形面積的比等于對應(yīng)邊的比的平方);相應(yīng)小棱錐的體積與原棱錐的體積的比等于頂點到截面距離與棱錐高的立方比;相應(yīng)小棱錐的的側(cè)面積與原棱錐的的側(cè)面積的比等于頂點到截面距離與棱錐高的平方比145歐拉定理(歐拉公式) (簡單多面體的頂點數(shù)V、棱數(shù)E和面數(shù)F)(1)=各面多邊形邊數(shù)和的一半特別地,若每個面的邊數(shù)為的多邊形,則面數(shù)F與棱數(shù)E的關(guān)系:;(2)若每個頂點引出的棱數(shù)為,則頂點數(shù)V與棱數(shù)E的關(guān)系:146球的半徑是R,則其體積,其表面積147球的組合體 (1)球與長方體的組合體: 長方體的外接球的直徑是長方體的體對角線長 (2)球與正方體的組合體:正方體的內(nèi)切球的直徑是正方體的棱長, 正方體的棱切球的直徑是正方體的面對角線長, 正方體的外接球的直徑是正方體的體對角線長 (3) 球與正四面體的組合體: 棱長為的正四面體的內(nèi)切球的半徑為(正四面體高的),外接球的半徑為(正四面體高的)148柱體、錐體的體積(是柱體的底面積、是柱體的高)(是錐體的底面積、是錐體的高)149分類計數(shù)原理(加法原理):150分步計數(shù)原理(乘法原理):151排列數(shù)公式 :=(,N*,且)規(guī)定152排列恒等式 :(1);(2);(3); (4);(5)(6) 153組合數(shù)公式:=(N*,且)154組合數(shù)的兩個性質(zhì):(1)= ;(2) +=規(guī)定 155組合恒等式(1);(2);(3); (4)=;(5)(6)(7) (8)(9)(10)156排列數(shù)與組合數(shù)的關(guān)系: 157單條件排列(以下各條的大前提是從個元素中取個元素的排列)(1)“在位”與“不在位”某(特)元必在某位有種;某(特)元不在某位有(補集思想)(著眼位置)(著眼元素)種(2)緊貼與插空(即相鄰與不相鄰)定位緊貼:個元在固定位的排列有種浮動緊貼:個元素的全排列把k個元排在一起的排法有種注:此類問題常用捆綁法;插空:兩組元素分別有k、h個(),把它們合在一起來作全排列,k個的一組互不能挨近的所有排列數(shù)有種(3)兩組元素各相同的插空 個大球個小球排成一列,小球必分開,問有多少種排法?當時,無解;當時,有種排法(4)兩組相同元素的排列:兩組元素有m個和n個,各組元素分別相同的排列數(shù)為158分配問題(1)(平均分組有歸屬問題)將相異的個物件等分給個人,各得件,其分配方法數(shù)共有(2)(平均分組無歸屬問題)將相異的個物體等分為無記號或無順序的堆,其分配方法數(shù)共有(3)(非平均分組有歸屬問題)將相異的個物體分給個人,物件必須被分完,分別得到,件,且,這個數(shù)彼此不相等,則其分配方法數(shù)共有(4)(非完全平均分組有歸屬問題)將相異的個物體分給個人,物件必須被分完,分別得到,件,且,這個數(shù)中分別有a、b、c、個相等,則其分配方法數(shù)有 (5)(非平均分組無歸屬問題)將相異的個物體分為任意的,件無記號的堆,且,這個數(shù)彼此不相等,則其分配方法數(shù)有(6)(非完全平均分組無歸屬問題)將相異的個物體分為任意的,件無記號的堆,且,這個數(shù)中分別有a、b、c、個相等,則其分配方法數(shù)有(7)(限定分組有歸屬問題)將相異的()個物體分給甲、乙、丙,等個人,物體必須被分完,如果指定甲得件,乙得件,丙得件,時,則無論,等個數(shù)是否全相異或不全相異其分配方法數(shù)恒有159“錯位問題”及其推廣信2封信與2個信封全部錯位有1種排法;信3封信與3個信封全部錯位有2種排法;信4封信與4個信封全部錯位有9種排法;信5封信與5個信封全部錯位有44種排法;貝努利裝錯箋問題:信封信與個信封全部錯位的組合數(shù)為推廣: 個元素與個位置,其中至少有個元素錯位的不同組合總數(shù)為160不定方程的解的個數(shù)(1)方程()的正整數(shù)解有個(2) 方程()的非負整數(shù)解有 個(3) 方程()滿足條件(,)的非負整數(shù)解有個161二項式定理 ;二項展開式的通項公式的展開式的系數(shù)關(guān)系:;162等可能性事件的概率:163互斥事件A,B分別發(fā)生的概率的和:P(AB)=P(A)P(B)164個互斥事件分別發(fā)生的概率的和:P(A1A2An)=P(A1)P(A2)P(An)165獨立事件A,B同時發(fā)生的概率:P(AB)= P(A)P(B)166n個獨立事件同時發(fā)生的概率: P(A1 A2 An)=P(A1) P(A2) P(An)167n次獨立重復(fù)試驗中某事件恰好發(fā)生k次的概率:168離散型隨機變量的分布列的兩個性質(zhì)(1);(2)169數(shù)學(xué)期望:170數(shù)學(xué)期望的性質(zhì)(1)(2)若,則(3) 若服從幾何分布,且,則171方差:172標準差:=173方差的性質(zhì)(1);(2)若,則(3) 若服從幾何分布,且,則174方差與期望的關(guān)系:175正態(tài)分布密度函數(shù):,式中的實數(shù),(0)是參數(shù),分別表示個體的平均數(shù)與標準差176標準正態(tài)分布密度函數(shù):177對于,取值小于x的概率:178回歸直線方程 ,其中179相關(guān)系數(shù) : |r|1,且|r|越接近于1,相關(guān)程度越大;|r|越接近于0,相關(guān)程度越小180特殊數(shù)列的極限 (1)(2)(3)(無窮等比數(shù)列 ()的和)181 函數(shù)的極限定理:182函數(shù)的夾逼性定理 如果函數(shù)f(x),g(x),h(x)在點x0的附近滿足:(1);(2)(常數(shù)),則(本定理對于單
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 咨詢與心理健康教育課件
- 云南省昆明市名校2025屆英語七年級第二學(xué)期期末達標檢測試題含答案
- 《華凌電氣網(wǎng)絡(luò)營銷戰(zhàn)略》課件
- 包裝世界題庫及答案
- 消費金融市場規(guī)模擴張趨勢解析及2025年風(fēng)險防控策略研究報告
- 安全質(zhì)量教育試題及答案
- 礦山智能化無人作業(yè)技術(shù)在提高礦山作業(yè)效率與安全性中的應(yīng)用報告
- 安全試卷試題及答案
- 安全生產(chǎn)考試題庫及答案大全
- 安全護理常規(guī)試題及答案
- 福建省福州市倉山區(qū)2022-2023學(xué)年八年級下學(xué)期期末英語試卷(含解析)
- 校園文化墻面設(shè)計施工流程
- 美學(xué)原理2爾雅滿分答案
- MOOC 工程倫理-西南石油大學(xué) 中國大學(xué)慕課答案
- 九年級上語文課本同步規(guī)范漢字字帖
- 24春國家開放大學(xué)《教育法學(xué)》終結(jié)性考試(大作業(yè))參考答案
- JTJ300-2000 港口及航道護岸工程設(shè)計與施工規(guī)范
- 血管外科科普知識宣傳
- 小米汽車發(fā)布會
- 安全應(yīng)急管理培訓(xùn)
- 高中化學(xué)核心素養(yǎng)(北師大王磊)
評論
0/150
提交評論