排列、組合、二項(xiàng)式定理概念、方法、題型、易誤點(diǎn)及應(yīng)試技巧總結(jié).doc_第1頁(yè)
排列、組合、二項(xiàng)式定理概念、方法、題型、易誤點(diǎn)及應(yīng)試技巧總結(jié).doc_第2頁(yè)
排列、組合、二項(xiàng)式定理概念、方法、題型、易誤點(diǎn)及應(yīng)試技巧總結(jié).doc_第3頁(yè)
排列、組合、二項(xiàng)式定理概念、方法、題型、易誤點(diǎn)及應(yīng)試技巧總結(jié).doc_第4頁(yè)
排列、組合、二項(xiàng)式定理概念、方法、題型、易誤點(diǎn)及應(yīng)試技巧總結(jié).doc_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

排列、組合、二項(xiàng)式定理概念、方法、題型、易誤點(diǎn)及應(yīng)試技巧總結(jié)1.排列數(shù)中、組合數(shù)中.(1)排列數(shù)公式 ;。如(1)若,則 , ;(2)滿足的 .(2)組合數(shù)公式;規(guī)定,.如已知,則 , (3)排列數(shù)、組合數(shù)的性質(zhì):;.2.解排列組合問題的依據(jù)是:分類相加(每類方法都能獨(dú)立地完成這件事,它是相互獨(dú)立的,一次的且每次得出的是最后的結(jié)果,只需一種方法就能完成這件事),分步相乘(一步得出的結(jié)果都不是最后的結(jié)果,任何一步都不能獨(dú)立地完成這件事,只有各個(gè)步驟都完成了,才能完成這件事,各步是關(guān)聯(lián)的),有序排列,無(wú)序組合如(1)將5封信投入3個(gè)郵筒,不同的投法共有 種;(2)從4臺(tái)甲型和5臺(tái)乙型電視機(jī)中任意取出3臺(tái),其中至少要甲型與乙型電視機(jī)各一臺(tái),則不同的取法共有 種;(3)從集合和中各取一個(gè)元素作為點(diǎn)的坐標(biāo),則在直角坐標(biāo)系中能確定不同點(diǎn)的個(gè)數(shù)是_;ACBD(4)將字母排成三行兩列,要求每行的字母互不相同,每列的字母也互不相同,則不同的排列方法共有 種;(5)由六棱錐的所有頂點(diǎn)所確定的直線共有_條,這些直線中共有_對(duì)異面直線;(6)用六種不同顏色把右圖中A、B、C、D四塊區(qū)域分開,允許同一顏色涂不同區(qū)域,但相鄰區(qū)域不能是同一種顏色,則共有 種不同涂法;(7)是集合到集合的映射,且,則不同的映射共有 個(gè);(8)一棟7層的樓房備有電梯,在一樓有甲、乙、丙三人進(jìn)了電梯,則滿足有且僅有一人要上7樓,且甲不在2樓下電梯的所有可能情況種數(shù)有_種 (9)有四位學(xué)生參加三項(xiàng)不同的競(jìng)賽,每位學(xué)生必須參加一項(xiàng)競(jìng)賽,則有不同的參賽方法有 ; 每項(xiàng)競(jìng)賽只許有一位學(xué)生參加,則有不同的參賽方法有 ; 每位學(xué)生最多參加一項(xiàng)競(jìng)賽,每項(xiàng)競(jìng)賽只許有一位學(xué)生參加,則不同的參賽方法有 。3.解排列組合問題的方法有:方法1:特殊元素、特殊位置優(yōu)先法(元素優(yōu)先法:先考慮有限制條件的元素的要求,再考慮其他元素;位置優(yōu)先法:先考慮有限制條件的位置的要求,再考慮其他位置)。如(1)從5種不同的蔬菜種子中選3種分別種在3塊不同土質(zhì)的土地上,共有_種不同的種法;(2)某單位準(zhǔn)備用不同花色的裝飾石材分別裝飾辦公樓中的辦公室、走廊、大廳的地面及樓的外墻,現(xiàn)有編號(hào)為1到6的6種不同花色的石材可選擇,其中1號(hào)石材有微量的放射性,不可用于辦公室內(nèi),則不同的裝飾效果有_種;(3)用0,1,2,3,4,5這六個(gè)數(shù)字,可以組成無(wú)重復(fù)數(shù)字的四位偶數(shù)_個(gè);(4)某班上午要上語(yǔ)、數(shù)、外和體育4門課,如體育不排在第一、四節(jié);語(yǔ)文不排在第一、二節(jié),則不同排課方案種數(shù)為_;(5)四個(gè)不同的小球全部放入編號(hào)為1、2、3、4的四個(gè)盒中。恰有兩個(gè)空盒的放法有_種;甲球只能放入第2或3號(hào)盒,而乙球不能放入第4號(hào)盒的不同放法有_種。 方法2: 間接法(對(duì)有限制條件的問題,先從總體考慮,再把不符合條件的所有情況去掉))。如:已知集合A5,B1,2,C1,3,4,從這三個(gè)集合中各取一個(gè)元素構(gòu)成空間直角坐標(biāo)系中點(diǎn)的坐標(biāo),則確定的不同點(diǎn)的個(gè)數(shù)為_。方法3:相鄰問題捆綁法(把相鄰的若干個(gè)特殊元素“捆綁”為一個(gè)大元素,然后再與其余“普通元素”全排列,最后再“松綁”,將特殊元素在這些位置上全排列)。如(1)把4名男生和4名女生排成一排,女生要排在一起,不同的排法種數(shù)為_;(2)某人射擊槍,命中槍,槍命中中恰好有槍連在一起的情況的不同種數(shù)為_;(3)把一同排6張座位編號(hào)為1,2,3,4,5,6的電影票全部分給4個(gè)人,每人至少分1張,至多分2張,且這兩張票具有連續(xù)的編號(hào),那么不同的分法種數(shù)是_;(4)用1,2,3,4,5,6組成六位數(shù)(沒有重復(fù)數(shù)字),要求任何相鄰兩個(gè)數(shù)字的奇偶性不同,且1和2相鄰,這樣的六位數(shù)的個(gè)數(shù)是_ 方法4: 不相鄰(相間)問題插空法(某些元素不能相鄰或某些元素要在某特殊位置時(shí)可采用插空法,即先安排好沒有限制元條件的元素,然后再把有限制條件的元素按要求插入排好的元素之間)。如(1)3人坐在一排八個(gè)座位上,若每人的左右兩邊都有空位,則不同的坐法種數(shù)有_種;(2)某班新年聯(lián)歡晚會(huì)原定的5個(gè)節(jié)目已排成節(jié)目單,開演前又增加了兩個(gè)新節(jié)目。如果將這兩個(gè)節(jié)目插入原節(jié)目單中,那么不同的插法種數(shù)為_;(3)12名同學(xué)合影,站成前排4人后排8人,現(xiàn)攝影師要從后排8人中抽2人調(diào)整到前排,若其他人的相對(duì)順序不變,則不同調(diào)整方法的總數(shù)是_。方法5: 多排問題單排法。如3名男生,4名女生,按照不同的要求排隊(duì),求不同的排法種數(shù)(1)選5名同學(xué)站成一排; (2)選5名同學(xué)站成兩排,前排2人,后排3人; (3)全體站成一排,其中甲、乙必須在兩端; (4)全體站成一排,男、女各站在一起; (5)全體站成一排,男、女生各不相鄰;(6)全體站成一排,男生不相鄰;(7)全體站成一排,甲、乙之間必須有2人;(8)全體站成一排,甲必須在乙的右邊; (9)全體站成一排,甲、乙、丙三人自左向右順序不變 方法6: 多元問題分類法。如(1)已知集合A1,2,3,B4,5,6,從A到B的映射f(x),B中有且僅有2個(gè)元素有原象,則這樣的映射個(gè)數(shù)為_個(gè); (2)某市擬從4個(gè)重點(diǎn)項(xiàng)目和6個(gè)一般項(xiàng)目中各選2個(gè)項(xiàng)目作為本年度啟動(dòng)的項(xiàng)目,則重點(diǎn)項(xiàng)目A和一般項(xiàng)目B至少有一個(gè)被選中的不同選法種數(shù)有_種;(3)9名翻譯人員中,5人只懂英語(yǔ),3人只懂日語(yǔ),1人既懂英語(yǔ),又懂日語(yǔ),從中選拔5人參加外事活動(dòng),要求其中3人擔(dān)任英語(yǔ)翻譯,2人擔(dān)任日語(yǔ)翻譯,選拔方式有_種;空間10個(gè)點(diǎn),其中有5點(diǎn)在同一個(gè)平面內(nèi),其余無(wú)三點(diǎn)共線,四點(diǎn)共面,問以這些點(diǎn)為頂點(diǎn),共可構(gòu)成_個(gè)四面體。方法7: 有序問題組合法。如(1)某大樓從一樓到二樓的樓梯共10級(jí),上樓時(shí)要可以一步上一級(jí),也可以一步上兩級(jí),規(guī)定從一樓到二樓用8步走完,則不同的上樓方法數(shù)有_種;(2)書架上有3本不同的書,如果保持這些書的相對(duì)順序不便,再放上2本不同的書,有 種不同的放法;(3)8個(gè)人坐成一排照相,現(xiàn)要調(diào)換其中3個(gè)人中每一個(gè)人的位置,其余5個(gè)人的位置不變,則不同的調(diào)換方式有_種;(4)有一張節(jié)目表中原有6個(gè)節(jié)目,如果保持這些節(jié)目的相對(duì)順序不變,再添進(jìn)去3個(gè)節(jié)目,則不同的添加方法有_種(5)設(shè)集合,對(duì)任意,有,則映射的個(gè)數(shù)是_;(6)如果一個(gè)三位正整數(shù)形如“”滿足,則稱這樣的三位數(shù)為凸數(shù)(如120、363、374等),那么所有凸數(shù)個(gè)數(shù)為_。方法8: 選取問題先選后排法。如某種產(chǎn)品有4只次品和6只正品,每只產(chǎn)品均不相同且可區(qū)分,今每次取出一只測(cè)試,直到4只次品全測(cè)出為止,則最后一只次品恰好在第五次測(cè)試時(shí),被發(fā)現(xiàn)的不同情況種數(shù)是_。方法9: 至多至少問題間接法。如從7名男同學(xué)和5名女同學(xué)中選出5人,至少有2名女同學(xué)當(dāng)選的選法有_種;從7名男同學(xué)和6名女同學(xué)中選4人去參加一個(gè)會(huì)議,規(guī)定男女同學(xué)至少有1人參加,則不同的選法有_種。方法10: 相同元素分組可采用隔板法。如(1)10個(gè)相同的球各分給3個(gè)人,每人至少一個(gè),有多少種分發(fā)?每人至少兩個(gè)呢?;(2)某運(yùn)輸公司有7個(gè)車隊(duì),每個(gè)車隊(duì)的車都多于4輛且型號(hào)相同,要從這7個(gè)車隊(duì)中抽出10輛車組成一運(yùn)輸車隊(duì),每個(gè)車隊(duì)至少抽1輛車,則不同的抽法有多少種? 4、分組問題:要注意區(qū)分是平均分組還是非平均分組,平均分成n組問題別忘除以n!。如:(1)六本不同的書,按下列條件,各有多少種不同的分法分給甲,乙,丙三人,每人兩本,有多少種分法? 分為三堆,每堆兩本,有多少種分法? 分為三堆,一堆一本,一堆兩本,一堆三本,有多少種分法? 分給甲,乙,丙三人,一人一本,一人兩本,一人三本,有多少種分法?分給甲,乙,丙、丁四人,每人至少一本,有多少種分法? (2) 12個(gè)籃球隊(duì)中有3個(gè)強(qiáng)隊(duì),將這12個(gè)隊(duì)任意分成3個(gè)組(每組4個(gè)隊(duì)),則3個(gè)強(qiáng)隊(duì)恰好被分在同一組的分法有 種。(3) 某展室有9個(gè)展臺(tái),現(xiàn)有件展品需要展出,要求每件展品獨(dú)自占用個(gè)展臺(tái),并且件展品所選用的展臺(tái)既不在兩端又不相鄰,則不同的展出方法有多少種?如果進(jìn)一步要求件展品所選用的展臺(tái)之間間隔不超過兩個(gè)展位,則不同的展出方法有多少種? 5.二項(xiàng)式定理:,其中組合數(shù)叫做第r+1項(xiàng)的二項(xiàng)式系數(shù);展開式共有n+1項(xiàng),其中第r+l項(xiàng)稱為二項(xiàng)展開式的通項(xiàng),二項(xiàng)展開式通項(xiàng)的主要用途是求指定的項(xiàng).特別提醒:(1)項(xiàng)的系數(shù)與二項(xiàng)式系數(shù)是不同的兩個(gè)概念,但當(dāng)二項(xiàng)式的兩個(gè)項(xiàng)的系數(shù)都為1時(shí),系數(shù)就是二項(xiàng)式系數(shù)。如在的展開式中,第項(xiàng)的二項(xiàng)式系數(shù)為,第項(xiàng)的系數(shù)為;而的展開式中的系數(shù)就是二項(xiàng)式系數(shù);(2)當(dāng)n的數(shù)值不大時(shí)往往借助楊輝三角直接寫出各項(xiàng)的二項(xiàng)式系數(shù);(3)審題時(shí)要注意區(qū)分所求的是項(xiàng)還是第幾項(xiàng)?求的是系數(shù)還是二項(xiàng)式系數(shù)?如(1)的展開式中常數(shù)項(xiàng)是_;(2)的展開式中的的系數(shù)為_ ;(3)展開后所得的的多項(xiàng)式中,系數(shù)為有理數(shù)的項(xiàng)共有_項(xiàng);(4)展開式中的常數(shù)項(xiàng)為_;(5)已知的展開式中,的系數(shù)是56,則實(shí)數(shù)a的值為_;(6)若的值能被5整除,則的可取值的個(gè)數(shù)有_個(gè)。6、二項(xiàng)式系數(shù)的性質(zhì):(1)對(duì)稱性:與首末兩端“等距離”的兩個(gè)二項(xiàng)式系數(shù)相等,即;(2)增減性與最大值:當(dāng)時(shí),二項(xiàng)式系數(shù)C的值逐漸增大,當(dāng)時(shí),C的值逐漸減小,且在中間取得最大值。當(dāng)n為偶數(shù)時(shí),中間一項(xiàng)(第1項(xiàng))的二項(xiàng)式系數(shù)取得最大值。當(dāng)n為奇數(shù)時(shí),中間兩項(xiàng)(第和1項(xiàng))的二項(xiàng)式系數(shù)相等并同時(shí)取最大值。如(1)在二項(xiàng)式的展開式中,系數(shù)最小的項(xiàng)的系數(shù)為_;(2)在的展開式中,第十項(xiàng)是二項(xiàng)式系數(shù)最大的項(xiàng),則_。(3)二項(xiàng)式系數(shù)的和:;。如(1)如果,則 ;(2)化簡(jiǎn)7、賦值法:應(yīng)用“賦值法”可求得二項(xiàng)展開式中各項(xiàng)系數(shù)和為、“奇數(shù) (偶次)項(xiàng)”系數(shù)和為,以及“偶數(shù) (奇次)項(xiàng)”系數(shù)和為。如(1)已知,則等于_;(2),則_;(3)設(shè),則_8、系數(shù)最大項(xiàng)的求法:設(shè)第項(xiàng)的系數(shù)最大,由不等式組確定。如求的展開式中,系數(shù)的絕對(duì)值最大的項(xiàng)和系數(shù)最大的項(xiàng)。9、二項(xiàng)式定理的應(yīng)用:二項(xiàng)式定理的主要應(yīng)用有近似計(jì)算、證明整除性問題或求余數(shù)、應(yīng)用其首尾幾項(xiàng)進(jìn)行放縮證明不等式。如(1)(0.998)5精確到0.001近似值為_;(2)被4除所得的余數(shù)為_;(3)今天是星期一,10045天后是星期_;(4)求證:能被64整除;(5)求證:概念、方法、題型、易誤點(diǎn)及應(yīng)試技巧總結(jié)1.排列數(shù)中、組合數(shù)中.(1)排列數(shù)公式 ;。如(1)1!+2!+3!+n?。ǎ┑膫€(gè)位數(shù)字為 (答:3);(2)滿足的 (答:8)(2)組合數(shù)公式;規(guī)定,.如已知,求 n,m的值(答:mn2)(3)排列數(shù)、組合數(shù)的性質(zhì):;.ACBD2.解排列組合問題的依據(jù)是:分類相加(每類方法都能獨(dú)立地完成這件事,它是相互獨(dú)立的,一次的且每次得出的是最后的結(jié)果,只需一種方法就能完成這件事),分步相乘(一步得出的結(jié)果都不是最后的結(jié)果,任何一步都不能獨(dú)立地完成這件事,只有各個(gè)步驟都完成了,才能完成這件事,各步是關(guān)聯(lián)的),有序排列,無(wú)序組合如(1)將5封信投入3個(gè)郵筒,不同的投法共有 種(答:);(2)從4臺(tái)甲型和5臺(tái)乙型電視機(jī)中任意取出3臺(tái),其中至少要甲型與乙型電視機(jī)各一臺(tái),則不同的取法共有 種(答:70);(3)從集合和中各取一個(gè)元素作為點(diǎn)的坐標(biāo),則在直角坐標(biāo)系中能確定不同點(diǎn)的個(gè)數(shù)是_(答:23);(4)72的正約數(shù)(包括1和72)共有 個(gè)(答:12);(5)的一邊AB上有4個(gè)點(diǎn),另一邊AC上有5個(gè)點(diǎn),連同的頂點(diǎn)共10個(gè)點(diǎn),以這些點(diǎn)為頂點(diǎn),可以構(gòu)成_個(gè)三角形(答:90);(6)用六種不同顏色把右圖中A、B、C、D四塊區(qū)域分開,允許同一顏色涂不同區(qū)域,但相鄰區(qū)域不能是同一種顏色,則共有 種不同涂法(答:480);(7)同室4人各寫1張賀年卡,然后每人從中拿1張別人送出的賀年卡,則4張賀年卡不同的分配方式有 種(答:9);(8)是集合到集合的映射,且,則不同的映射共有 個(gè)(答:7);3.解排列組合問題的方法有:(1)特殊元素、特殊位置優(yōu)先法(元素優(yōu)先法:先考慮有限制條件的元素的要求,再考慮其他元素;位置優(yōu)先法:先考慮有限制條件的位置的要求,再考慮其他位置)。如(1)某單位準(zhǔn)備用不同花色的裝飾石材分別裝飾辦公樓中的辦公室、走廊、大廳的地面及樓的外墻,現(xiàn)有編號(hào)為1到6的6種不同花色的石材可選擇,其中1號(hào)石材有微量的放射性,不可用于辦公室內(nèi),則不同的裝飾效果有_種(答:300);(2)某銀行儲(chǔ)蓄卡的密碼是一個(gè)4位數(shù)碼,某人采用千位、百位上的數(shù)字之積作為十位個(gè)位上的數(shù)字(如2816)的方法設(shè)計(jì)密碼,當(dāng)積為一位數(shù)時(shí),十位上數(shù)字選0. 千位、百位上都能取0. 這樣設(shè)計(jì)出來(lái)的密碼共有_種(答:100);(3)用0,1,2,3,4,5這六個(gè)數(shù)字,可以組成無(wú)重復(fù)數(shù)字的四位偶數(shù)_個(gè)(答:156);(4)某班上午要上語(yǔ)、數(shù)、外和體育4門課,如體育不排在第一、四節(jié);語(yǔ)文不排在第一、二節(jié),則不同排課方案種數(shù)為_(答:6);(5)四個(gè)不同的小球全部放入編號(hào)為1、2、3、4的四個(gè)盒中。恰有兩個(gè)空盒的放法有_種;甲球只能放入第2或3號(hào)盒,而乙球不能放入第4號(hào)盒的不同放法有_種(答:84;96);(6)設(shè)有編號(hào)為1、2、3、4、5的五個(gè)茶杯和編號(hào)為1、2、3、4、5的5個(gè)杯蓋,將五個(gè)杯蓋蓋在五個(gè)茶杯上,至少有兩個(gè)杯蓋和茶杯的編號(hào)相同的蓋法有_種(答:31)(2)間接法(對(duì)有限制條件的問題,先從總體考慮,再把不符合條件的所有情況去掉))。如在平面直角坐標(biāo)系中,由六個(gè)點(diǎn)(0,0),(1,2),(2,4),(6,3),(1,2),(2,1)可以確定三角形的個(gè)數(shù)為_(答:15)。(3)相鄰問題捆綁法(把相鄰的若干個(gè)特殊元素“捆綁”為一個(gè)大元素,然后再與其余“普通元素”全排列,最后再“松綁”,將特殊元素在這些位置上全排列)。如(1)把4名男生和4名女生排成一排,女生要排在一起,不同的排法種數(shù)為_(答:2880);(2)某人射擊槍,命中槍,槍命中中恰好有槍連在一起的情況的不同種數(shù)為_(答:20);(3)把一同排6張座位編號(hào)為1,2,3,4,5,6的電影票全部分給4個(gè)人,每人至少分1張,至多分2張,且這兩張票具有連續(xù)的編號(hào),那么不同的分法種數(shù)是_(答:144)(4)不相鄰(相間)問題插空法(某些元素不能相鄰或某些元素要在某特殊位置時(shí)可采用插空法,即先安排好沒有限制元條件的元素,然后再把有限制條件的元素按要求插入排好的元素之間)。如(1)3人坐在一排八個(gè)座位上,若每人的左右兩邊都有空位,則不同的坐法種數(shù)有_種(答:24);(2)某班新年聯(lián)歡晚會(huì)原定的5個(gè)節(jié)目已排成節(jié)目單,開演前又增加了兩個(gè)新節(jié)目。如果將這兩個(gè)節(jié)目插入原節(jié)目單中,那么不同的插法種數(shù)為_(答:42)。(5)多排問題單排法。如若2n個(gè)學(xué)生排成一排的排法數(shù)為x,這2 n個(gè)學(xué)生排成前后兩排,每排各n個(gè)學(xué)生的排法數(shù)為y,則x,y的大小關(guān)系為_(答:相等);(6)多元問題分類法。如(1)某化工廠實(shí)驗(yàn)生產(chǎn)中需依次投入2種化工原料,現(xiàn)有5種原料可用,但甲、乙兩種原料不能同時(shí)使用,且依次投料時(shí),若使用甲原料,則甲必須先投放. 那么不同的實(shí)驗(yàn)方案共有_種(答:15);(2)某公司新招聘進(jìn)8名員工,平均分給下屬的甲、乙兩個(gè)部門.其中兩名英語(yǔ)翻譯人員不能同給一個(gè)部門;另三名電腦編程人員也不能同給一個(gè)部門,則不同的分配方案有_種(答:36);(3)9名翻譯中,6個(gè)懂英語(yǔ),4個(gè)懂日語(yǔ),從中選撥5人參加外事活動(dòng),要求其中3人擔(dān)任英語(yǔ)翻譯,選撥的方法有_種(答:90);(7)有序問題組合法。如(1)書架上有3本不同的書,如果保持這些書的相對(duì)順序不便,再放上2本不同的書,有 種不同的放法(答:20);(2)百米決賽有6名運(yùn)動(dòng)A、B、C、D、E、F參賽,每個(gè)運(yùn)動(dòng)員的速度都不同,則運(yùn)動(dòng)員A比運(yùn)動(dòng)員F先到終點(diǎn)的比賽結(jié)果共有_種(答:360);(3)學(xué)號(hào)為1,2,3,4的四名學(xué)生的考試成績(jī)且滿足,則這四位同學(xué)考試成績(jī)的所有可能情況有_種(答:15);(4)設(shè)集合,對(duì)任意,有,則映射的個(gè)數(shù)是_(答:);(5)如果一個(gè)三位正整數(shù)形如“”滿足,則稱這樣的三位數(shù)為凸數(shù)(如120、363、374等),那么所有凸數(shù)個(gè)數(shù)為_(答:240);(6)離心率等于(其中且)的不同形狀的的雙曲線的個(gè)數(shù)為_(答:26)。(8)選取問題先選后排法。如某種產(chǎn)品有4只次品和6只正品,每只產(chǎn)品均不相同且可區(qū)分,今每次取出一只測(cè)試,直到4只次品全測(cè)出為止,則最后一只次品恰好在第五次測(cè)試時(shí),被發(fā)現(xiàn)的不同情況種數(shù)是_(答:576)。(9)至多至少問題間接法。如從7名男同學(xué)和5名女同學(xué)中選出5人,至少有2名女同學(xué)當(dāng)選的選法有_種(答:596)(10)相同元素分組可采用隔板法。如(1)10個(gè)相同的球各分給3個(gè)人,每人至少一個(gè),有多少種分發(fā)?每人至少兩個(gè)呢?(答:36;15);(2)某運(yùn)輸公司有7個(gè)車隊(duì),每個(gè)車隊(duì)的車都多于4輛且型號(hào)相同,要從這7個(gè)車隊(duì)中抽出10輛車組成一運(yùn)輸車隊(duì),每個(gè)車隊(duì)至少抽1輛車,則不同的抽法有多少種?(答:84)4、分組問題:要注意區(qū)分是平均分組還是非平均分組,平均分成n組問題別忘除以n!。如4名醫(yī)生和6名護(hù)士組成一個(gè)醫(yī)療小組,若把他們分配到4所學(xué)校去為學(xué)生體檢,每所學(xué)校需要一名醫(yī)生和至少一名護(hù)士的不同選派方法有_種(答:37440);5.二項(xiàng)式定理:,其中組合數(shù)叫做第r+1項(xiàng)的二項(xiàng)式系數(shù);展開式共有n+1項(xiàng),其中第r+l項(xiàng)稱為二項(xiàng)展開式的通項(xiàng),二項(xiàng)展開式通項(xiàng)的主要用途是求指定的項(xiàng).特別提醒:(1)項(xiàng)的系數(shù)與二項(xiàng)式系數(shù)是不同的兩個(gè)概念,但當(dāng)二項(xiàng)式的兩個(gè)項(xiàng)的系數(shù)都為1時(shí),系數(shù)就是二項(xiàng)式系數(shù)。如在的展開式中,第項(xiàng)的二項(xiàng)式系數(shù)為,第項(xiàng)的系數(shù)為;而的展開式中的系數(shù)就是二項(xiàng)式系數(shù);(2)當(dāng)n的數(shù)值不大時(shí)往

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論