



免費預(yù)覽已結(jié)束,剩余1頁可下載查看
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1.1.2量詞一、創(chuàng)設(shè)情境在前面的學習過程中,我們曾經(jīng)遇到過一類重要的問題:給含有“至多、至少、有一個”等量詞的命題進行否定,確定它們的非命題.大家都曾感到困惑和無助,今天我們將專門學習和討論這類問題,以解心中的郁結(jié).問題1:請你給下列劃橫線的地方填上適當?shù)脑~一 紙;一 牛;一 狗;一 馬;一 人家;一 小船【答案】張頭條匹戶葉什么是量詞?這些表示人、事物或動作的單位的詞稱為量詞.漢語的物量詞紛繁復(fù)雜,又有兼表形象特征的作用,選用時主要應(yīng)該講求形象性,同時要遵從習慣性,并注意靈活性.不遵守量詞使用的這些原則,就會鬧出“一匹?!薄耙活^狗”“一只魚”的笑話來.二、活動嘗試所有已知人類語言都使用量化,即使是那些沒有完整的數(shù)字系統(tǒng)的語言,量詞是人們相互交往的重要詞語.我們今天研究的量詞不是究其語境和使用習慣問題,而是更多的給予它數(shù)學的意境.問題2:下列命題中含有哪些量詞?(1)對所有的實數(shù)x,都有x20;(2)存在實數(shù)x,滿足x20;(3)至少有一個實數(shù)x,使得x220成立;(4)存在有理數(shù)x,使得x220成立;(5)對于任何自然數(shù)n,有一個自然數(shù)s 使得 s = n n;(6)有一個自然數(shù)s 使得對于所有自然數(shù)n,有 s = n n;上述命題中含有:“所有的”、“存在”、“至少”、“任何”等表示全體和部分的量詞.三、師生探究命題中除了主詞、謂詞、聯(lián)詞以外,還有量詞.命題的量詞,表示的是主詞數(shù)量的概念.在謂詞邏輯中,量詞被分為兩類:一類是全稱量詞,另一類是存在量詞. 全稱量詞:如“所有”、“任何”、“一切”等.其表達的邏輯為:“對宇宙間的所有事物x來說,x都是f.”例句:“所有的魚都會游泳.”存在量詞:如“有”、“有的”、“有些”等.其表達的邏輯為:“宇宙間至少有一個事物x,x是f.”例句:“有的工程師是工人出身.”含有量詞的命題通常包括單稱命題、特稱命題和全稱命題三種. 單稱命題:其公式為“(這個)s是p”.例句:“這件事是我經(jīng)辦的.”單稱命題表示個體,一般不需要量詞標志,有時會用“這個”“某個”等.在三段論中是作為全稱命題來處理的.全稱命題:其公式為“所有s是p”.例句:“所有產(chǎn)品都是一等品”.全稱命題,可以用全稱量詞,也可以用“都”等副詞、“人人”等主語重復(fù)的形式來表達,甚至有時可以沒有任何的量詞標志,如“人類是有智慧的.”特稱命題:其公式為“有的s是p”.例句:“大多數(shù)學生星期天休息”.特稱命題使用存在量詞,如“有些”、“很少”等,也可以用“基本上”、“一般”、“只是有些”等.含有存在性量詞的命題也稱存在性命題.問題3:判斷下列命題是全稱命題,還是存在性命題? (1)方程2x=5只有一解;(2)凡是質(zhì)數(shù)都是奇數(shù);(3)方程2x21=0有實數(shù)根;(4)沒有一個無理數(shù)不是實數(shù);(5)如果兩直線不相交,則這兩條直線平行;(6)集合ab是集合a的子集;解:(1)存在性命題;(2)全稱命題;(3)存在性命題;(4)全稱命題;(5)全稱命題;(6)全稱命題;四、數(shù)學理論 1開語句:語句中含有變量x或y,在沒有給定這些變量的值之前,是無法確定語句真假的這種含有變量的語句叫做開語句.如,x2,x-5=3,(x+y)(x-y)=0.2表示個體常項或變項之間數(shù)量關(guān)系的詞為量詞.量詞可分兩種: (1) 全稱量詞 日常生活和數(shù)學中所用的“一切的”,“所有的”,“每一個”,“任意的”,“凡”,“都”等詞可統(tǒng)稱為全稱量詞,記作、等,表示個體域里的所有個體. (2) 存在量詞日常生活和數(shù)學中所用的“存在”,“有一個”,“有的”,“至少有一個”等詞統(tǒng)稱為存在量詞,記作,等,表示個體域里有的個體.3含有全稱量詞的命題稱為全稱命題,含有存在量詞的命題稱為存在性稱命題. 全稱命題的格式:“對m中的所有x,p(x)”的命題,記為:存在性命題的格式:“存在集合m中的元素x,q(x)”的命題,記為:注:全稱量詞就是“任意”,寫成上下顛倒過來的大寫字母a,實際上就是英語any中的首字母.存在量詞就是“存在”、“有”,寫成左右反過來的大寫字母e,實際上就是英語exist中的首字母.存在量詞的“否”就是全稱量詞.五、鞏固運用例1:判定全稱命題的真假:(1) xr, x2+20;(2) xr, x41;(3) xz, x30,即x2+20.因此命題xr, x2+20是真命題.(2)由于0n,當x=0時,x41不成立,因此命題xr, x41是假命題.(3)由于-1z,當x=-1時,能使x31.因此命題 xz, x31是真命題.(4)由于使x2=3成立的數(shù)只有,而它們都不是有理數(shù),因而沒有任何一個有理數(shù)的平方能等于3,因此命題xq, x2=3是假命題.六、回顧反思要判斷一個存在性命題為真,只要在給定的集合中找到一個元素x,使命題p(x)為真;要判斷一個存在性命題為假,必須對在給定集合的每一個元素x,使命題p(x)為假.要判斷一個全稱命題為真,必須對在給定集合的每一個元素x,使命題p(x)為真;但要判斷一個全稱命題為假時,只要在給定的集合中找到一個元素x,使命題p(x)為假.即全稱命題與存在性命題之間有可能轉(zhuǎn)化,它們之間并不是對立的關(guān)系.七、課后練習1判斷下列全稱命題的真假,其中真命題為( ) a所有奇數(shù)都是質(zhì)數(shù) bc對每個無理數(shù)x,則x2也是無理數(shù) d每個函數(shù)都有反函數(shù)【答案】b2將“x2+y22xy”改寫成全稱命題,下列說法正確的是( )a,都有 b,都有c,都有 d,都有【答案】a3判斷下列命題的真假,其中為真命題的是a bc d【答案】d4下列命題中的假命題是( )a存在實數(shù)和,使cos(+)=coscos+sinsinb不存在無窮多個和,使cos(+)=coscos+sinsinc對任意和,使cos(+)=coscossinsind不存在這樣的和,使cos(+) coscossinsin【答案】b5對
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 都勻三中小升初數(shù)學試卷
- 奉化今年高考數(shù)學試卷
- 2025年05月四川成都市青白江區(qū)婦幼保健院第二季面向社會招聘編外人員8人筆試歷年專業(yè)考點(難、易錯點)附帶答案詳解
- 2025年云南迪慶州德欽縣人民醫(yī)院招聘編外影像技術(shù)專業(yè)人員(1人)筆試歷年專業(yè)考點(難、易錯點)附帶答案詳解
- 防暑知識培訓課件
- 2025至2030純凈水零售行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 湖南興湘科技創(chuàng)新有限公司招聘筆試真題2024
- 2024年衡水深州市市直機關(guān)選調(diào)筆試真題
- 港北區(qū)分班考數(shù)學試卷
- 福州名校聯(lián)考數(shù)學試卷
- 二年級數(shù)學必練100題
- 網(wǎng)絡(luò)帶寬使用證明
- 民眾生活中的民俗學智慧樹知到期末考試答案章節(jié)答案2024年湖南師范大學
- 麻醉中的呼氣末正壓調(diào)節(jié)技巧
- 組織學與胚胎學(南方醫(yī)科大學)智慧樹知到期末考試答案章節(jié)答案2024年南方醫(yī)科大學
- 2020年云南省曲靖市富源縣中小學、幼兒園教師進城考試真題庫及答案
- 教師專業(yè)發(fā)展智慧樹知到期末考試答案2024年
- 2024年03月廣東省韶關(guān)市法院2024年招考31名勞動合同制審判輔助人員筆試歷年(2016-2023年)真題薈萃帶答案解析
- 師承指導老師臨床經(jīng)驗總結(jié)
- 拋光簡介介紹
- 熱射病預(yù)防與急救
評論
0/150
提交評論