三角形全部知識(shí)點(diǎn)的總結(jié).doc_第1頁
三角形全部知識(shí)點(diǎn)的總結(jié).doc_第2頁
三角形全部知識(shí)點(diǎn)的總結(jié).doc_第3頁
三角形全部知識(shí)點(diǎn)的總結(jié).doc_第4頁
三角形全部知識(shí)點(diǎn)的總結(jié).doc_第5頁
免費(fèi)預(yù)覽已結(jié)束,剩余1頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第一章 圖形的初步認(rèn)識(shí)考點(diǎn)一、線段垂直平分線,角的平分線,垂線1、線段垂直平分線的性質(zhì)定理及逆定理垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線。線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等。逆定理:和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。2、角的平分線及其性質(zhì)一條射線把一個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。角的平分線有下面的性質(zhì)定理:(1)角平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等。(2)到一個(gè)角的兩邊距離相等的點(diǎn)在這個(gè)角的平分線上。3垂線的性質(zhì):性質(zhì)1:過一點(diǎn)有且只有一條直線與已知直線垂直。性質(zhì)2:直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短。簡稱:垂線段最短。考點(diǎn)二、平行線 1、平行線的概念在同一個(gè)平面內(nèi),不相交的兩條直線叫做平行線。同一平面內(nèi),兩條直線的位置關(guān)系只有兩種:相交或平行。4、平行線的性質(zhì)(1)兩直線平行,同位角相等;(2)兩直線平行,內(nèi)錯(cuò)角相等;(3)兩直線平行,同旁內(nèi)角互補(bǔ)。考點(diǎn)三、投影與視圖 1、投影投影的定義:用光線照射物體,在地面上或墻壁上得到的影子,叫做物體的投影。平行投影:由平行光線(如太陽光線)形成的投影稱為平行投影。中心投影:由同一點(diǎn)發(fā)出的光線所形成的投影稱為中心投影。2、視圖當(dāng)我們從某一角度觀察一個(gè)實(shí)物時(shí),所看到的圖像叫做物體的一個(gè)視圖。物體的三視圖特指主視圖、俯視圖、左視圖。主視圖:在正面內(nèi)得到的由前向后觀察物體的視圖,叫做主視圖。俯視圖:在水平面內(nèi)得到的由上向下觀察物體的視圖,叫做俯視圖。左視圖:在側(cè)面內(nèi)得到的由左向右觀察物體的視圖,叫做左視圖,有時(shí)也叫做側(cè)視圖。第二章 三角形考點(diǎn)一、三角形1、三角形的分類三角形按邊的關(guān)系分類如下: 不等邊三角形三角形 底和腰不相等的等腰三角形 等腰三角形 等邊三角形三角形按角的關(guān)系分類如下: 直角三角形(有一個(gè)角為直角的三角形)三角形 銳角三角形(三個(gè)角都是銳角的三角形) 斜三角形 鈍角三角形(有一個(gè)角為鈍角的三角形)把邊和角聯(lián)系在一起,我們又有一種特殊的三角形:等腰直角三角形。它是兩條直角邊相等的直角三角形。2、三角形的三邊關(guān)系定理及推論(1)三角形三邊關(guān)系定理:三角形的兩邊之和大于第三邊。推論:三角形的兩邊之差小于第三邊。3、三角形的內(nèi)角和定理及推論三角形的內(nèi)角和定理:三角形三個(gè)內(nèi)角和等于180。推論:直角三角形的兩個(gè)銳角互余。三角形的一個(gè)外角等于和它不相鄰的來兩個(gè)內(nèi)角的和。三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角。注:在同一個(gè)三角形中:等角對等邊;等邊對等角;大角對大邊;大邊對大角。4、三角形的面積三角形的面積=底高考點(diǎn)二、全等三角形 1、全等三角形的概念能夠完全重合的兩個(gè)三角形叫做全等三角形。2、三角形全等的判定三角形全等的判定定理:(1)邊角邊定理:有兩邊和它們的夾角對應(yīng)相等的兩個(gè)三角形全等(可簡寫成“邊角邊”或“SAS”)(2)角邊角定理:有兩角和它們的夾邊對應(yīng)相等的兩個(gè)三角形全等(可簡寫成“角邊角”或“ASA”)(3)邊邊邊定理:有三邊對應(yīng)相等的兩個(gè)三角形全等(可簡寫成“邊邊邊”或“SSS”)。直角三角形全等的判定:對于特殊的直角三角形,判定它們?nèi)葧r(shí),還有HL定理(斜邊、直角邊定理):有斜邊和一條直角邊對應(yīng)相等的兩個(gè)直角三角形全等(可簡寫成“斜邊、直角邊”或“HL”)3、全等變換只改變圖形的位置,不改變其形狀大小的圖形變換叫做全等變換。全等變換包括一下三種:(1)平移變換:把圖形沿某條直線平行移動(dòng)的變換叫做平移變換。(2)對稱變換:將圖形沿某直線翻折180,這種變換叫做對稱變換。(3)旋轉(zhuǎn)變換:將圖形繞某點(diǎn)旋轉(zhuǎn)一定的角度到另一個(gè)位置,這種變換叫做旋轉(zhuǎn)變換??键c(diǎn)三、等腰三角形 1、等腰三角形的性質(zhì)(1)等腰三角形的性質(zhì)定理及推論:定理:等腰三角形的兩個(gè)底角相等(簡稱:等邊對等角)推論1:等腰三角形頂角平分線平分底邊并且垂直于底邊。即等腰三角形的頂角平分線、底邊上的中線、底邊上的高重合。推論2:等邊三角形的各個(gè)角都相等,并且每個(gè)角都等于60。2、三角形中的中位線連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線。(1)三角形共有三條中位線,并且它們又重新構(gòu)成一個(gè)新的三角形。(2)要會(huì)區(qū)別三角形中線與中位線。三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半。三角形中位線定理的作用:位置關(guān)系:可以證明兩條直線平行。數(shù)量關(guān)系:可以證明線段的倍分關(guān)系。常用結(jié)論:任一個(gè)三角形都有三條中位線,由此有:結(jié)論1:三條中位線組成一個(gè)三角形,其周長為原三角形周長的一半。結(jié)論2:三條中位線將原三角形分割成四個(gè)全等的三角形。結(jié)論3:三條中位線將原三角形劃分出三個(gè)面積相等的平行四邊形。結(jié)論4:三角形一條中線和與它相交的中位線互相平分。結(jié)論5:三角形中任意兩條中位線的夾角與這夾角所對的三角形的頂角相等。第三章 解直角三角形考點(diǎn)一、直角三角形的性質(zhì) 1、直角三角形的兩個(gè)銳角互余2、在直角三角形中,30角所對的直角邊等于斜邊的一半。3、直角三角形斜邊上的中線等于斜邊的一半 4直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即5、攝影定理在直角三角形中,斜邊上的高線是兩直角邊在斜邊上的攝影的比例中項(xiàng),每條直角邊是它們在斜邊上的攝影和斜邊的比例中項(xiàng)ACB=90 CDAB 6、常用關(guān)系式由三角形面積公式可得:ABCD=ACBC考點(diǎn)二、銳角三角函數(shù)的概念 (38分) 1、如圖,在ABC中,C=90 2、一些特殊角的三角函數(shù)值三角函數(shù) 0 30 45 60 90sin01cos10tan01不存在cot不存在103、各銳角三角函數(shù)之間的關(guān)系(1)互余關(guān)系:sinA=cos(90A),cosA=sin(90A),tanA=cot(90A),cotA=tan(90A)(2)平方關(guān)系:(3)倒數(shù)關(guān)系:tanAtan(90A)=1(4)弦切關(guān)系:tanA=第四章 圖形的相似考點(diǎn)一、比例線段 1、比例的性質(zhì)(1)基本性質(zhì)a:b=c:dad=bca:b=b:c(2)更比性質(zhì)(交換比例的內(nèi)項(xiàng)或外項(xiàng)) (交換內(nèi)項(xiàng)) (交換外項(xiàng)) (同時(shí)交換內(nèi)項(xiàng)和外項(xiàng))(3)反比性質(zhì)(交換比的前項(xiàng)、后項(xiàng)):(4)合比性質(zhì):(5)等比性質(zhì):3、黃金分割把線段AB分成兩條線段AC,BC(ACBC),并且使AC是AB和BC的比例中項(xiàng),叫做把線段AB黃金分割,點(diǎn)C叫做線段AB的黃金分割點(diǎn),其中AC=AB0.618AB考點(diǎn)二、平行線分線段成比例定理 三條平行線截兩條直線,所得的對應(yīng)線段成比例??键c(diǎn)三、相似三角形 1、相似三角形的概念對應(yīng)角相等,對應(yīng)邊成比例的三角形叫做相似三角形。相似用符號(hào)“”來表示2、相似三角形的基本定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似。相似三角形的等價(jià)關(guān)系:(1)反身性:對于任一ABC,都有ABCABC;(2)對稱性:若ABCABC,則ABCABC(3)傳遞性:若ABCABC,并且ABCABC,則ABCABC。3、三角形相似的判定(1)三角形相似的判定方法定義法:對應(yīng)角相等,對應(yīng)邊成比例的兩個(gè)三角形相似平行法:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似判定定理1:如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對應(yīng)相等,那么這兩個(gè)三角形相似,可簡述為兩角對應(yīng)相等,兩三角形相似。判定定理2:如果一個(gè)三角形的兩條邊和另一個(gè)三角形的兩條邊對應(yīng)成比例,并且夾角相等,那么這兩個(gè)三角形相似,可簡述為兩邊對應(yīng)成比例且夾角相等,兩三角形相似。判定定理3:如果一個(gè)三角形的三條邊與另一個(gè)三角形的三條邊對應(yīng)成比例,那么這兩個(gè)三角形相似,可簡述為三邊對應(yīng)成比例,兩三角形相似(2)直角三角形相似的判定方法以上各種判定方法均適用定理:如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個(gè)直角三角形相似4、相似三角形的性質(zhì)(1)相似三角形的對應(yīng)角相等,對應(yīng)邊成比例(2)相似三角形對應(yīng)高的比、對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比(3)相似三角形周長的比等于相似比(4)相似三角形面積的比等于相似比的平方。5、相似多邊形(1)如果兩個(gè)邊數(shù)相同的多邊形的對應(yīng)角相等,對應(yīng)邊成比例,那么這兩個(gè)多邊形叫做相似多邊形。相似多邊形對應(yīng)邊的比叫做相似比(或相似系數(shù))(2)相似多邊形的性質(zhì)相似多邊形的對應(yīng)角相等,對應(yīng)邊成比例相似多邊形周長的比、對應(yīng)對角線的比都等于相似比相似多邊形中的對應(yīng)三角形相似,相似比等于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論