![極坐標(biāo)與參數(shù)方程知識點(diǎn)總結(jié)大全90615_第1頁](http://file1.renrendoc.com/fileroot_temp2/2020-3/28/d5e59067-cb86-4262-b845-43d8926a5928/d5e59067-cb86-4262-b845-43d8926a59281.gif)
![極坐標(biāo)與參數(shù)方程知識點(diǎn)總結(jié)大全90615_第2頁](http://file1.renrendoc.com/fileroot_temp2/2020-3/28/d5e59067-cb86-4262-b845-43d8926a5928/d5e59067-cb86-4262-b845-43d8926a59282.gif)
![極坐標(biāo)與參數(shù)方程知識點(diǎn)總結(jié)大全90615_第3頁](http://file1.renrendoc.com/fileroot_temp2/2020-3/28/d5e59067-cb86-4262-b845-43d8926a5928/d5e59067-cb86-4262-b845-43d8926a59283.gif)
![極坐標(biāo)與參數(shù)方程知識點(diǎn)總結(jié)大全90615_第4頁](http://file1.renrendoc.com/fileroot_temp2/2020-3/28/d5e59067-cb86-4262-b845-43d8926a5928/d5e59067-cb86-4262-b845-43d8926a59284.gif)
![極坐標(biāo)與參數(shù)方程知識點(diǎn)總結(jié)大全90615_第5頁](http://file1.renrendoc.com/fileroot_temp2/2020-3/28/d5e59067-cb86-4262-b845-43d8926a5928/d5e59067-cb86-4262-b845-43d8926a59285.gif)
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
精品文檔 1歡迎下載 1 平面直角坐標(biāo)系中的坐標(biāo)伸縮變換 設(shè)點(diǎn) P x y 是平面直角坐標(biāo)系中的任意一點(diǎn) 在變換 的作用下 點(diǎn) P x y 對應(yīng)到點(diǎn) 稱為平面直角 坐標(biāo)系中的坐標(biāo)伸縮變換 簡稱伸縮變換 2 極坐標(biāo)系的概念 1 極坐標(biāo)系 如圖所示 在平面內(nèi)取一個(gè)定點(diǎn) 叫做極點(diǎn) 自極點(diǎn)引 一條射線 叫做極軸 再選定一個(gè)長度單位 一個(gè)角度單位 通常取弧度 及其 正方向 通常取逆時(shí)針方向 這樣就建立了一個(gè)極坐標(biāo)系 注注 極坐標(biāo)系以角這一平面圖形為幾何背景 而平面直角坐標(biāo)系以互相垂直 的兩條數(shù)軸為幾何背景 平面直角坐標(biāo)系內(nèi)的點(diǎn)與坐標(biāo)能建立一一對應(yīng)的關(guān)系 而極坐標(biāo)系則不可 但極坐標(biāo)系和平面 直角坐標(biāo)系都是平面坐標(biāo)系 2 極坐標(biāo) 設(shè) M 是平面內(nèi)一點(diǎn) 極點(diǎn)與點(diǎn) M 的距離 OM 叫做點(diǎn) M 的極徑 記為 以極 軸為始邊 射線為終邊的角叫做點(diǎn) M 的極角 記為 有序數(shù)對 叫做點(diǎn) M 的極坐標(biāo) 記作 一般地 不作特殊說明時(shí) 我們認(rèn)為可取任意實(shí)數(shù) 特別地 當(dāng)點(diǎn)在極點(diǎn)時(shí) 它的極坐標(biāo)為 0 R 和直角坐標(biāo)不同 平面內(nèi)一個(gè)點(diǎn)的極坐標(biāo)有無數(shù)種表示 如果規(guī)定 那么除極點(diǎn)外 平面內(nèi)的點(diǎn)可用唯一的極坐標(biāo) 表示 同時(shí) 極坐標(biāo)表示的點(diǎn)也是唯一確定的 3 極坐標(biāo)和直角坐標(biāo)的互化 精品文檔 2歡迎下載 1 互化背景 把直角坐標(biāo)系的原點(diǎn)作為極點(diǎn) x 軸的正半軸作為極軸 并在 兩種坐標(biāo)系中取相同的長度單位 如圖所示 2 互化公式 設(shè)是坐標(biāo)平面內(nèi)任意一點(diǎn) 它的直角坐標(biāo)是 極坐標(biāo) 是 于是極坐標(biāo)與直角坐標(biāo)的互化公式如表 點(diǎn) 直角坐標(biāo)極坐標(biāo) 互化公式 在一般情況下 由確定角時(shí) 可根據(jù)點(diǎn)所在的象限最小正角 4 常見曲線的極坐標(biāo)方程 曲線圖形極坐標(biāo)方程 圓心在極點(diǎn) 半徑為的圓 精品文檔 3歡迎下載 圓心為 半徑為的圓 圓心為 半徑為的圓 過極點(diǎn) 傾斜角為的直線 1 2 過點(diǎn) 與極軸垂直的直線 過點(diǎn) 與極軸平行的直線 注注 由于平面上點(diǎn)的極坐標(biāo)的表示形式不唯一 即 都表示同一點(diǎn)的坐標(biāo) 這與點(diǎn)的直角坐 標(biāo)的唯一性明顯不同 所以對于曲線上的點(diǎn)的極坐標(biāo)的多種表示形式 只要求至 少有一個(gè)能滿足極坐標(biāo)方程即可 例如對于極坐標(biāo)方程點(diǎn)可以表 精品文檔 4歡迎下載 示為等多種形式 其中 只有的極坐 標(biāo)滿足方程 二 參數(shù)方程二 參數(shù)方程 1 1 參數(shù)方程的概念參數(shù)方程的概念 一般地 在平面直角坐標(biāo)系中 如果曲線上任意一點(diǎn)的坐標(biāo)都是某個(gè)變 數(shù) 的函數(shù) 并且對于 的每一個(gè)允許值 由方程組 所確定的點(diǎn) 都在這條曲線上 那么方程 就叫做這條曲線的參數(shù)方程 聯(lián)系變數(shù) 的變數(shù) 叫做參變數(shù) 簡稱參數(shù) 相對于參數(shù)方程而言 直接給出點(diǎn)的坐標(biāo)間 關(guān)系的方程叫做普通方程 2 2 參數(shù)方程和普通方程的互化參數(shù)方程和普通方程的互化 1 曲線的參數(shù)方程和普通方程是曲線方程的不同形式 一般地可以通過消 去參數(shù)而從參數(shù)方程得到普通方程 2 如果知道變數(shù)中的一個(gè)與參數(shù) 的關(guān)系 例如 把它代入普通 方程 求出另一個(gè)變數(shù)與參數(shù)的關(guān)系 那么就是曲線的參數(shù)方程 在 參數(shù)方程與普通方程的互化中 必須使的取值范圍保持一致 注 注 普通方程化為參數(shù)方程 參數(shù)方程的形式不一定唯一 應(yīng)用參數(shù)方程 解軌跡問題 關(guān)鍵在于適當(dāng)?shù)卦O(shè)參數(shù) 如果選用的參數(shù)不同 那么所求得的曲 線的參數(shù)方程的形式也不同 3 3 圓的參數(shù) 圓的參數(shù) 如圖所示 設(shè)圓的半徑為 點(diǎn)從初始位置出發(fā) 按逆時(shí)針方向 在圓上作勻速圓周運(yùn)動(dòng) 設(shè) 則 這就是圓心在原點(diǎn) 半徑為 的圓的參數(shù)方程 其中的幾何意義是 轉(zhuǎn)過的角度 圓心為 半徑為 的圓的普通方程是 精品文檔 5歡迎下載 它的參數(shù)方程為 4 4 橢圓的參數(shù)方程 橢圓的參數(shù)方程 以坐標(biāo)原點(diǎn)為中心 焦點(diǎn)在軸上的橢圓的標(biāo)準(zhǔn)方程為 其參數(shù)方程為 其中參數(shù)稱為離 心角 焦點(diǎn)在軸上的橢圓的標(biāo)準(zhǔn)方程是其參數(shù)方程為 其中參數(shù)仍為離心角 通常規(guī)定參數(shù)的范圍為 0 2 注 注 橢圓的參數(shù)方程中 參數(shù)的幾何意義為橢圓上任一點(diǎn)的離心角 要 把它和這一點(diǎn)的旋轉(zhuǎn)角區(qū)分開來 除了在四個(gè)頂點(diǎn)處 離心角和旋轉(zhuǎn)角數(shù)值 可相等外 即在到的范圍內(nèi) 在其他任何一點(diǎn) 兩個(gè)角的數(shù)值都不相等 但當(dāng)時(shí) 相應(yīng)地也有 在其他象限內(nèi)類似 5 5 雙曲線的參數(shù)方程 雙曲線的參數(shù)方程 以坐標(biāo)原點(diǎn)為中心 焦點(diǎn)在軸上的雙曲線的標(biāo)準(zhǔn)議程為 其參數(shù)方程為 其中 焦點(diǎn)在軸上的雙曲線的標(biāo)準(zhǔn)方程是其參數(shù)方程為 以上參數(shù)都是雙曲線上任意一點(diǎn)的離心角 6 6 拋物線的參數(shù)方程 拋物線的參數(shù)方程 精品文檔 6歡迎下載 以坐標(biāo)原點(diǎn)為頂點(diǎn) 開口向右的拋物線的參數(shù)方程為 7 7 直線的參數(shù)方程 直線的參數(shù)方程 經(jīng)過點(diǎn) 傾斜角為的直線 的普通方程是 而過 傾斜角為的直線 的參數(shù)方程為 注 注 直線參數(shù)方程中參數(shù)的幾何意義 過定點(diǎn) 傾斜角為的直 線 的參數(shù)方程為 其中 表示直線 上以定點(diǎn)為起 點(diǎn) 任一點(diǎn)為終點(diǎn)的有向線段的數(shù)量 當(dāng)點(diǎn)在上方時(shí) 0 當(dāng)點(diǎn)在下方時(shí) 0 當(dāng)點(diǎn)與重合時(shí) 0 我們也可以 把參數(shù) 理解為以為原點(diǎn) 直線 向上的方向?yàn)檎较虻臄?shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代辦公室空間的靈活性與可變性設(shè)計(jì)
- 現(xiàn)代物流人才培養(yǎng)與教育創(chuàng)新
- 學(xué)校記者團(tuán)國慶節(jié)活動(dòng)方案
- 現(xiàn)代企業(yè)的辦公自動(dòng)化與多維度管理培訓(xùn)體系構(gòu)建研究
- 現(xiàn)代企業(yè)家的自我管理與時(shí)間管理策略
- 現(xiàn)代汽車制造工藝的變革與教育新模式
- 現(xiàn)代企業(yè)決策中的核心能力體現(xiàn)
- 國慶節(jié)主題活動(dòng)方案早教
- 2023三年級數(shù)學(xué)下冊 四 綠色生態(tài)園-解決問題第3課時(shí)說課稿 青島版六三制001
- 2024-2025學(xué)年高中歷史 專題八 當(dāng)今世界經(jīng)濟(jì)的全球化趨勢 二 當(dāng)今世界經(jīng)濟(jì)的全球化趨勢(3)教學(xué)說課稿 人民版必修2
- 燃煤電廠超低排放煙氣治理工程技術(shù)規(guī)范(HJ 2053-2018)
- 臨床敘事護(hù)理概述與應(yīng)用
- TSG-T7001-2023電梯監(jiān)督檢驗(yàn)和定期檢驗(yàn)規(guī)則宣貫解讀
- 冠脈介入進(jìn)修匯報(bào)
- 護(hù)理病例討論制度課件
- 養(yǎng)陰清肺膏的臨床應(yīng)用研究
- 恩施自治州建始東升煤礦有限責(zé)任公司東升煤礦礦產(chǎn)資源開發(fā)利用與生態(tài)復(fù)綠方案
- PDCA提高臥床患者踝泵運(yùn)動(dòng)的執(zhí)行率
- 蔣詩萌小品《誰殺死了周日》臺詞完整版
- DBJ-T 15-98-2019 建筑施工承插型套扣式鋼管腳手架安全技術(shù)規(guī)程
- 2025屆新高考英語復(fù)習(xí)閱讀理解說明文解題策略
評論
0/150
提交評論