已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
初等函數(shù)的圖形冪函數(shù)的圖形指數(shù)函數(shù)的圖形對數(shù)函數(shù)的圖形 三角函數(shù)的圖形各三角函數(shù)值在各象限的符號sincsc cossec tancot三角函數(shù)的性質(zhì)函數(shù)y=sinxy=cosxy=tanxy=cotx定義域RRxxR且xk+,kZxxR且xk,kZ值域-1,1x=2k+ 時ymax=1x=2k- 時ymin=-1-1,1x=2k時ymax=1x=2k+時ymin=-1R無最大值無最小值R無最大值無最小值周期性周期為2周期為2周期為周期為奇偶性奇函數(shù)偶函數(shù)奇函數(shù)奇函數(shù)單調(diào)性在2k-,2k+ 上都是增函數(shù);在2k+ ,2k+上都是減函數(shù)(kZ)在2k-,2k上都是增函數(shù);在2k,2k+上都是減函數(shù)(kZ)在(k-,k+)內(nèi)都是增函數(shù)(kZ)在(k,k+)內(nèi)都是減函數(shù)(kZ)反三角函數(shù)的圖形 反三角函數(shù)的性質(zhì)名稱反正弦函數(shù)反余弦函數(shù)反正切函數(shù)反余切函數(shù)定義y=sinx(x-, 的反函數(shù),叫做反正弦函數(shù),記作x=arsinyy=cosx(x0,)的反函數(shù),叫做反余弦函數(shù),記作x=arccosyy=tanx(x(- , )的反函數(shù),叫做反正切函數(shù),記作x=arctanyy=cotx(x(0,)的反函數(shù),叫做反余切函數(shù),記作x=arccoty理解arcsinx表示屬于-,且正弦值等于x的角arccosx表示屬于0,且余弦值等于x的角arctanx表示屬于(-,),且正切值等于x的角arccotx表示屬于(0,)且余切值等于x的角性質(zhì)定義域-1,1-1,1(-,+)(-,+)值域-,0,(-,)(0,)單調(diào)性在-1,1上是增函數(shù)在-1,1上是減函數(shù)在(-,+)上是增數(shù)在(-,+)上是減函數(shù)奇偶性arcsin(-x)=-arcsinxarccos(-x)=-arccosxarctan(-x)=-arctanxarccot(-x)=-arccotx周期性都不是同期函數(shù)恒等式sin(arcsinx)=x(x-1,1)arcsin(sinx)=x(x-,)cos(arccosx)=x(x-1,1) arccos(cosx)=x(x0,)tan(arctanx)=x(xR)arctan(tanx)=x(x(-,))cot(arccotx)=x(xR)arccot(cotx)=x(x(0,)互余恒等式arcsinx+arccosx=(x-1,1)arctanx+arccotx=(XR)三角函數(shù)公式兩角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tan(A-B) =cot(A+B) =cot(A-B) =倍角公式tan2A =Sin2A=2SinACosACos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tanatan(+a)tan(-a)半角公式sin()=cos()=tan()=cot()= tan()=和差化積 sina+sinb=2sincossina-sinb=2cossincosa+cosb = 2coscoscosa-cosb = -2sinsintana+tanb=積化和差 sinasinb = -cos(a+b)-cos(a-b)cosacosb = cos(a+b)+cos(a-b)sinacosb = sin(a+b)+sin(a-b)cosasinb = sin(a+b)-sin(a-b)誘導(dǎo)公式 sin(-a) = -sinacos(-a) = cosasin(-a) = cosacos(-a) = sinasin(+a) = cosacos(+a) = -sinasin(-a) = sinacos(-a) = -cosasin(+a) = -sinacos(+a) = -cosatgA=tanA =萬能公式sina=cosa=tana=其它公式asina+bcosa=sin(a+c) 其中tanc=asin(a)-bcos(a) = cos(a-c) 其中tan(c)=1+sin(a) =(sin+cos)21-sin(a) = (sin-cos)2其他非重點三角函數(shù)csc(a) = sec(a) =雙曲函數(shù)sinh(a)=cosh(a)=tg h(a)=公式一設(shè)為任意角,終邊相同的角的同一三角函數(shù)的值相等: sin(2k)= sin cos(2k)= cos tan(2k)= tan cot(2k)= cot 公式二 設(shè)為任意角,+的三角函數(shù)值與的三角函數(shù)值之間的關(guān)系: sin()= -sin cos()= -cos tan()= tan cot()= cot 公式三 任意角與 -的三角函數(shù)值之間的關(guān)系: sin(-)= -sin cos(-)= cos tan(-)= -tan cot(-)= -cot 公式四 利用公式二和公式三可以得到-與的三角函數(shù)值之間的關(guān)系: sin(-)= sin cos(-)= -cos tan(-)= -tan cot(-)= -cot 公式五 利用公式-和公式三可以得到2-與的三角函數(shù)值之間的關(guān)系: sin(2-)= -sin cos(2-)= cos tan(2-)= -tan cot(2-)= -cot 公式六及與的三角函數(shù)值之間的關(guān)系: sin(+)= cos cos(+)= -sin tan(+)= -cot cot(+)= -tan sin(-)= cos cos(-)= sin tan(-)= cot cot(-)= tan sin(+)= -cos cos(+)= sin tan(+)= -cot cot(+)= -tan sin(-)= -cos cos(-)= -sin tan(-)= cot cot(-)= tan (以上kZ) 這個物理常用公式我費了半天的勁才輸進(jìn)來,希望對大家有用 Asin(t+)+ Bsin(t+) =sin三角函數(shù)公式證明(全部)公式表達(dá)式 乘法與因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式|a+b|a|+|b| |a-b|a|+|b| |a|b-bab |a-b|a|-|b| -|a|a|a| 一元二次方程的解-b+(b2-4ac)/2a -b-b+(b2-4ac)/2a 根與系數(shù)的關(guān)系 X1+X2=-b/a X1*X2=c/a 注:韋達(dá)定理 判別式 b2-4a=0 注:方程有相等的兩實根 b2-4ac0 注:方程有一個實根 b2-4ac0 拋物線標(biāo)準(zhǔn)方程 y2=2px y2=-2px x2=2py x2=-2py 直棱柱側(cè)面積 S=c*h 斜棱柱側(cè)面積 S=c*h 正棱錐側(cè)面積 S=1/2c*h 正棱臺側(cè)面積 S=1/2(c+c)h 圓臺側(cè)面積 S=1/2(c+c)l=pi(R+r)l 球的表面積 S=4pi*r2 圓柱側(cè)面積 S=c*h=2pi*h 圓
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024天津房屋買賣合同中房屋租賃保證金及退還3篇
- 2024年互動直播平臺開發(fā)與用戶參與度提升合同
- 2024年度全國范圍內(nèi)房產(chǎn)交易委托代辦服務(wù)合同范本3篇
- 《電視調(diào)頻發(fā)送技術(shù)》課件
- 江蘇省泰州市興化市常青藤學(xué)校聯(lián)盟2022-2023學(xué)年八年級下學(xué)期第一次月度檢測英語試題
- 2024年版船舶租賃與買賣合同
- 2024年度孫瓊與配偶財產(chǎn)分割離婚協(xié)議書3篇
- 2025果園長期承包合同
- 2025物業(yè)衛(wèi)生日常保潔服務(wù)合同
- 2024年版外籍高級工程師聘請協(xié)議模板版B版
- 中醫(yī)藥與中華傳統(tǒng)文化智慧樹知到期末考試答案2024年
- 產(chǎn)品質(zhì)量保證函模板
- 模板支撐腳手架集中線荷載、施工總荷載計算表(修正)
- GB/T 43700-2024滑雪場所的運行和管理規(guī)范
- 新媒體部門崗位配置人員架構(gòu)圖
- 水電站廠房設(shè)計-畢業(yè)設(shè)計
- 綜合金融服務(wù)方案課件
- 《鎮(zhèn)原民俗》課件
- 球磨機(jī)崗位作業(yè)指導(dǎo)書
- 眼科護(hù)理滴眼藥水論文
- 市級社?;疬\行分析報告
評論
0/150
提交評論