五年級數(shù)學(xué)思維訓(xùn)練——巧求表面積.doc_第1頁
五年級數(shù)學(xué)思維訓(xùn)練——巧求表面積.doc_第2頁
五年級數(shù)學(xué)思維訓(xùn)練——巧求表面積.doc_第3頁
五年級數(shù)學(xué)思維訓(xùn)練——巧求表面積.doc_第4頁
免費(fèi)預(yù)覽已結(jié)束,剩余1頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

學(xué)越輔導(dǎo)五年級數(shù)學(xué)思維訓(xùn)練巧求表面積知識導(dǎo)航 我們已經(jīng)學(xué)習(xí)了長方體和正方體,知道長方體或正方體六個面面積的總和叫做長方體或正方體的表面積。如果長方體的長用a表示、寬用b表示、高用h表示,那么,長方體的表面積=(abahbh)2。如果正方體的棱長用a表示,則正方體的表面積=6a2。對于由幾個長方體或正方體組合而成的幾何體,或者是一個長方體或正方體組合而成的幾何形體,它們的表面積又如何求呢?涉及立體圖形的問題,往往可考查同學(xué)們的看圖能力和空間想象能力。小學(xué)階段遇到的立體圖形主要是長方體和正方體,這些圖形的特點(diǎn)都是可以從六個方向去看,特別是求表面積時,就是上下、左右和前后六個方向(有時只考慮上、左、前三個方向)的平面圖形的面積的總和。有了這個原則,在解決類似問題時就十分方便了。精典例題例1:一個棱長為5分米的正方體上放一個棱長為4分米的小正方體(下圖),求這個立體圖形的表面積。 思路點(diǎn)撥分析我們把上面的小正方體想象成是可以向下“壓縮”的,“壓縮”后我們發(fā)現(xiàn):小正方體的上面與大正方體上面中的陰影部分合在一起,正好是大正方體的上面。這樣這個立體圖形有表面積就可以分成這樣兩部分:上下方向:大正方體的兩個底面,側(cè)面:小正方體的四個側(cè)面+大正方體的四個側(cè)面。解:上下方向:552=50(平方分米),側(cè)面:554=100(平方分米),444=64(平方分米),故這個立體圖形的表面積為:5010064=214(平方分米)。模仿練習(xí)如圖所示,由三個正方體木塊粘合而成的模型,它們的棱長分別為1米、2米、4米,要在表面涂刷油漆,如果大正方體的下面不涂油漆,則模型涂刷油漆的面積是多少平方米? 例2:下圖是一個棱長為2厘米的正方體,在正方體上表面的正中,向下挖一個棱長為1厘米的正方體小洞,接著在小洞的底面正中向下挖一個棱長為0.5厘米的正方體小洞,第三個正方體小洞的挖法與前兩個相同,棱長為0.25厘米。那么最后得到的立體圖形的表面積是多少平方厘米? 思路點(diǎn)撥 分析這道題的難點(diǎn)是洞里的表面積不易求。在小洞里,平行 于上下表面的所有面的面積和等于邊長為1厘米的正方形的面積,這個邊長為1厘米的正方形再與圖中陰影部分的面積合在一起正好是邊長為2厘米的正方體的上表面的面積。這個立體圖形的表面積分成兩部分:上下方向:2個邊長為2厘米的正方形的面積; 側(cè)面:邊長為2厘米的4個正方形的面積和,邊長為1厘米的4個正方形的面積和,邊長為0.5厘米的4個正方形的面積和,邊長為0.25厘米的4個正方形的面積和。模仿練習(xí)一個正方體的棱長為4厘米,在它的前、后、左、右、上、下面中心各挖去一個棱長為1厘米的正方體做成一種玩具,求這個玩具的表面積。 例3:把19個棱長為1厘米的正方體重疊在一起,按下圖中的方式拼成一個立體圖形,求這個立體圖形的表面積。 思路點(diǎn)撥分析從上下、左右、前后看時的平面圖形分別如下面三圖所示:因此,這個立體圖形的表面積為:2個上面2個左面2個前面。上面的面積為:9平方厘米,左面的面積為:8平方厘米,前面的面積為:10平方厘米。因此,這個立體圖形的表面積為:(9810)2=54(平方厘米)。模仿練習(xí)下圖中的一些積木是由16塊棱長為2厘米的正方體堆成的,它的表面積是多少平方厘米? 例4:一個正方體開頭的木塊,棱長為1米,沿著水平方向?qū)⑺彸?片,每片又按任意尺寸鋸成4條,每條又按任意尺寸鋸成5小塊,共得到大大小小的長方體60塊,如下圖,問這60塊長方體表面積的和是多少平方米? 思路點(diǎn)撥 分析原來的正方體有六個外表面,每個面的面積是11=1 (平方米),無論后來鋸成多少塊,這六個外表面的6平方米總是被計入后來的小木塊的表面積的。再考慮每鋸一刀,就會得到兩個1平方米的表面,現(xiàn)在一共鋸了:234=9(刀),一共得到18平方米的表面。因此,總的表面積為:6(234)2=24(平方米)。解:每鋸一刀,就會得到兩個1平方米的表面。 12=2(平方米),一共鋸了:234=9(刀,得到:29=18(平方米)的表面。 因此,這大大小小的60塊長方體的表面積的和為: 618=24(平方米)。模仿練習(xí)下圖中是一個表面被涂上紅色的棱長為10厘米的正方體木塊,如果把它沿著虛線切成8個正方體,這些小正方體中沒有被涂上紅色的所有表面的面積和是多少平方厘米? 課后練習(xí)1.下圖是一個長方體,長8米,寬5米,體積是160立方米。這個長方體的表面積是多少平方米? 2.有一個棱長 4cm 的正方體,從它的右上方截去一個棱長分別為 4cm,2cm,1cm 的長方體(如下圖),求剩下部分的表面積。 3.三個正方體,棱長分別是25、18、11,把它們?nèi)鐖D從大到小壘起來,那么,壘成的圖形表面積是多少?4. 邊長為1厘米的正方體,如圖這樣層層重疊放置,那么當(dāng)重疊到第3層時,這個立體圖形的表面積是多少平方厘米? 5

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論