電磁屏蔽和吸波材料的研究進(jìn)展_第1頁
電磁屏蔽和吸波材料的研究進(jìn)展_第2頁
電磁屏蔽和吸波材料的研究進(jìn)展_第3頁
電磁屏蔽和吸波材料的研究進(jìn)展_第4頁
電磁屏蔽和吸波材料的研究進(jìn)展_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、電磁屏蔽和吸波材料1、引言隨著現(xiàn)代電子工業(yè)的快速發(fā)展,各種無線通信系統(tǒng)和高頻電子器件數(shù)量的急劇增加,導(dǎo)致了電磁干擾現(xiàn)象的增多和 電磁污染問題的日漸突出。電磁波輻射已成為繼噪聲污染、大氣污染、水污染、固體廢物污染之后的又一大公害。電磁波輻射產(chǎn)生的電磁干擾(EMI)不僅會(huì)影響各種電子設(shè)備的正常運(yùn)行,而且對(duì)身體健康也有危害。目前,主要的抗電磁千擾技術(shù)包括:屏蔽技術(shù)、接地技術(shù)和濾波技術(shù)。其中,屏蔽技術(shù)的主要方法是采用各種屏蔽材料對(duì)電磁輻射進(jìn)行有效阻隔與損耗。吸波功能材料的研究是軍事隱身技術(shù)領(lǐng)域中的前沿課題之一,其目的是最大限度地減少或消除雷達(dá)、紅外等對(duì)目標(biāo)的探測(cè)。世界上多個(gè)國(guó)家相繼展開了對(duì)戰(zhàn)機(jī)、巡航導(dǎo)

2、彈、艦艇等軍事用吸波材料的研究。由于電磁屏蔽材料和吸波材料在社會(huì)生活和國(guó)防建設(shè)中的重要作用,因而其研究開發(fā)成為人們?nèi)找骊P(guān)注的重要課題。2、電磁屏蔽和吸波材料的基本原理材料對(duì)電磁波屏蔽和吸收的程度用屏蔽效能(SE)來表示,單位為分貝(dB),一般來說,SE 越大,則衰減的程度越高。2.1屏蔽體對(duì)電磁波的衰減機(jī)理屏蔽體對(duì)電磁波的衰減機(jī)理有3種: (l)空氣屏蔽體界面的阻抗不連續(xù)性,對(duì)入射電磁波產(chǎn)生反射衰減; (2)未被表面反射而進(jìn)入屏蔽體內(nèi)的電磁波被屏蔽材料吸收的衰減; (3)進(jìn)入屏蔽體內(nèi)未被吸收衰減的電磁波到達(dá)屏蔽體一空氣界面時(shí)因阻抗不連續(xù)性被反射,并在屏蔽體內(nèi)部發(fā)生多次反射衰減。屏蔽效能可用下

3、式表示: SET = SER+ SEA+ SEM (1) 式中:SER表示反射損失,SEA表示吸收損失,SEM表示多次反射損失。 2.2吸波材料的基本物理原理吸波材料的基本物理原理是,材料對(duì)入射電磁波實(shí)現(xiàn)有效吸收,將電磁波能量轉(zhuǎn)換為熱能或其它形式的能量而損耗掉。該材料應(yīng)具備兩個(gè)特性即波阻抗匹配特性和衰減特性。波阻抗匹配特性即創(chuàng)造特殊的邊界條件是入射電磁波在材料介質(zhì)表面的反射系數(shù) r 最小,從而盡可能的從表面進(jìn)入介質(zhì)內(nèi)部。衰減特性是指進(jìn)入材料內(nèi)部的電磁波因損耗而被迅速吸收。損耗大小,可用電損耗因子和磁損耗因子來表征。要提高介質(zhì)吸波效能,其基本途徑是提高介質(zhì)電導(dǎo)率,增加極化“摩擦”和磁化“摩擦”,

4、同時(shí)還要滿足阻抗匹配條件,使電磁波不反射而進(jìn)入介質(zhì)內(nèi)部被吸收。3、常見電磁屏蔽材料的分類及特點(diǎn) 3.1電磁屏蔽涂料 電磁屏蔽涂料是由導(dǎo)電填料、樹脂黏結(jié)劑、溶劑和添加劑組成,根據(jù)填料的不同,可分為碳系、銀系、銅系和鎳系電磁屏蔽涂料等。近年來,在導(dǎo)電涂料領(lǐng)域的一個(gè)熱門課題是對(duì)復(fù)合導(dǎo)電涂料的研究。其中鎳在這方面具有較高的應(yīng)用價(jià)值。其一是高導(dǎo)電鍍層可以鍍覆于鎳填料自身的表面;其二是鎳可以鍍覆于其它材料表面。研究表明,鍍鎳石墨是較有發(fā)展前途的,它可以得到比純石墨高得多的導(dǎo)電性,而且成本要比純鎳填料低,這種產(chǎn)品對(duì)屏蔽涂料技術(shù)帶來了巨大沖擊。3.2電磁屏蔽塑料 電磁屏蔽塑料可分為表層導(dǎo)電型屏蔽塑料和填充型屏

5、蔽塑料。表層導(dǎo)電型屏蔽塑料是利用貼金屬箔、金屬熔融噴射和非電解電鍍等方法在塑料表面獲得很薄的金屬層,從而達(dá)到屏蔽的目的。它具有導(dǎo)電性好,屏蔽效果佳等特點(diǎn),但是其金屬薄復(fù)合層或鍍層在使用和加工過程中容易剝離,性能較差,因此使用較少 。填充型復(fù)合屏蔽用填料一般有金屬粉、金屬纖維、炭黑、碳纖維、導(dǎo)電玻璃纖維及一些高分子纖維(PAN纖維,聚苯胺纖維等)等。4、常見吸波材料的分類及特點(diǎn)吸波材料按材料的吸波損耗機(jī)理可分為電阻型、電介質(zhì)型和磁介質(zhì)型。吸波材料的性能主要取決于吸波劑的損耗吸收能力,因此吸波劑的研究一直是吸波材料研究的重點(diǎn)。目前主要有以下幾種吸波材料。4.1 鐵氧體吸波材料 鐵氧體吸波材料具有吸

6、收強(qiáng)、頻帶寬及成本低等特點(diǎn),但是它的密度大,耐高溫性能差。4.2 納米吸波材料 納米吸波材料是指材料的組分特征尺寸在0.1100 nm 之間的材料。它具有段吸收頻帶寬、兼容性好、質(zhì)量輕、厚度薄等特點(diǎn)。4.3 多晶鐵纖維吸波材料 多晶鐵纖維吸波材料包括鐵、鎳、鈷及其合金纖維。它的吸波機(jī)理是渦流損耗和磁滯損耗。多晶鐵纖維具有獨(dú)特的形狀各向異性,可在很寬的頻帶內(nèi)實(shí)現(xiàn)高吸收,而且它是一種輕質(zhì)的吸波材料。4.4 導(dǎo)電高聚物導(dǎo)電高聚物是由共主鏈的絕緣高分子,通過化學(xué)或電化學(xué)的方法與摻雜劑進(jìn)行電荷轉(zhuǎn)移復(fù)合而成。它具有密度小,結(jié)構(gòu)多樣,及獨(dú)特的物理、化學(xué)性能。4.5 等離子體隱身技術(shù)5、結(jié)束語基于對(duì)各種屏蔽材

7、料的研究現(xiàn)狀和應(yīng)用前景的分析,電磁屏蔽材料的發(fā)展趨勢(shì)為:(l)納米材料因其獨(dú)特的結(jié)構(gòu)表現(xiàn)出許多特殊的性能,如奇特的磁性和對(duì)電磁波極強(qiáng)的吸收性.材料納米化和納米材料復(fù)合技術(shù)將成為未來電磁屏蔽材料發(fā)展的一個(gè)重要方向。(2 )近年來,由于各種制膜工藝技術(shù)的進(jìn)步,屏蔽材料逐漸從三維向低維方向發(fā)展。薄膜屏蔽材料尤其是納米薄膜屏蔽材料因其質(zhì)量輕、厚度薄、吸收性好等優(yōu)點(diǎn)而成為電磁屏蔽材料中發(fā)展最快的領(lǐng)域之一。(3 )導(dǎo)電高聚物材料具有電導(dǎo)率高、質(zhì)量輕、耐鹿蝕、成本低等優(yōu)點(diǎn),尤其是近年來采用各種方法改性后的導(dǎo)電高濃物材料,在溶解性和可加工性發(fā)面得到較大改扮,因而在電磁屏蔽領(lǐng)域擁有廣闊的應(yīng)用前景。(4 )多層屏

8、蔽結(jié)構(gòu)材料的結(jié)構(gòu)和材料的優(yōu)化設(shè)計(jì)潛力大,綜合屏蔽性能相對(duì)單層屏 蔽結(jié)構(gòu)材料有較大提高。因而,屏蔽材料由單層結(jié)構(gòu)向多層復(fù)合結(jié)構(gòu)的發(fā)展是新型電磁屏蔽材料的一個(gè)發(fā)展趨勢(shì)。()5 在實(shí)際應(yīng)用中,入射到電磁屏蔽材料表面的電磁波大部分被反射,成為新的潛在干擾源,近年來出現(xiàn)的高吸收低反射電磁屏蔽材料則可克服這一弊端。因而研制具有高吸收性能的損耗型電磁屏蔽材料將成為未來屏蔽材料發(fā)展的一個(gè)重要方向。永磁交流伺服電機(jī)位置反饋傳感器檢測(cè)相位與電機(jī)磁極相位的對(duì)齊方式2008-11-07來源:internet瀏覽:504 主流的伺服電機(jī)位置反饋元件包括增量式編碼器,絕對(duì)式編碼器,正余弦編碼器,旋轉(zhuǎn)變壓器等。為支持永磁交

9、流伺服驅(qū)動(dòng)的矢量控制,這些位置反饋元件就必須能夠?yàn)樗欧?qū)動(dòng)器提供永磁交流伺服電機(jī)的永磁體磁極相位,或曰電機(jī)電角度信息,為此當(dāng)位置反饋元件與電機(jī)完成定位安裝時(shí),就有必要調(diào)整好位置反饋元件的角度檢測(cè)相位與電機(jī)電角度相位之間的相互關(guān)系,這種調(diào)整可以稱作電角度相位初始化,也可以稱作編碼器零位調(diào)整或?qū)R。下面列出了采用增量式編碼器,絕對(duì)式編碼器,正余弦編碼器,旋轉(zhuǎn)變壓器等位置反饋元件的永磁交流伺服電機(jī)的傳感器檢測(cè)相位與電機(jī)電角度相位的對(duì)齊方式。增量式編碼器的相位對(duì)齊方式 在此討論中,增量式編碼器的輸出信號(hào)為方波信號(hào),又可以分為帶換相信號(hào)的增量式編碼器和普通的增量式編碼器,普通的增量式編碼器具備兩相正交方

10、波脈沖輸出信號(hào)A和B,以及零位信號(hào)Z;帶換相信號(hào)的增量式編碼器除具備ABZ輸出信號(hào)外,還具備互差120度的電子換相信號(hào)UVW,UVW各自的每轉(zhuǎn)周期數(shù)與電機(jī)轉(zhuǎn)子的磁極對(duì)數(shù)一致。帶換相信號(hào)的增量式編碼器的UVW電子換相信號(hào)的相位與轉(zhuǎn)子磁極相位,或曰電角度相位之間的對(duì)齊方法如下: 1.用一個(gè)直流電源給電機(jī)的UV繞組通以小于額定電流的直流電,U入,V出,將電機(jī)軸定向至一個(gè)平衡位置; 2.用示波器觀察編碼器的U相信號(hào)和Z信號(hào); 3.調(diào)整編碼器轉(zhuǎn)軸與電機(jī)軸的相對(duì)位置; 4.一邊調(diào)整,一邊觀察編碼器U相信號(hào)跳變沿,和Z信號(hào),直到Z信號(hào)穩(wěn)定在高電平上(在此默認(rèn)Z信號(hào)的常態(tài)為低電平),鎖定編碼器與電機(jī)的相對(duì)位置

11、關(guān)系; 5.來回扭轉(zhuǎn)電機(jī)軸,撒手后,若電機(jī)軸每次自由回復(fù)到平衡位置時(shí),Z信號(hào)都能穩(wěn)定在高電平上,則對(duì)齊有效。 撤掉直流電源后,驗(yàn)證如下: 1.用示波器觀察編碼器的U相信號(hào)和電機(jī)的UV線反電勢(shì)波形; 2.轉(zhuǎn)動(dòng)電機(jī)軸,編碼器的U相信號(hào)上升沿與電機(jī)的UV線反電勢(shì)波形由低到高的過零點(diǎn)重合,編碼器的Z信號(hào)也出現(xiàn)在這個(gè)過零點(diǎn)上。 上述驗(yàn)證方法,也可以用作對(duì)齊方法。 需要注意的是,此時(shí)增量式編碼器的U相信號(hào)的相位零點(diǎn)即與電機(jī)UV線反電勢(shì)的相位零點(diǎn)對(duì)齊,由于電機(jī)的U相反電勢(shì),與UV線反電勢(shì)之間相差30度,因而這樣對(duì)齊后,增量式編碼器的U相信號(hào)的相位零點(diǎn)與電機(jī)U相反電勢(shì)的-30度相位點(diǎn)對(duì)齊,而電機(jī)電角度相位與U

12、相反電勢(shì)波形的相位一致,所以此時(shí)增量式編碼器的U相信號(hào)的相位零點(diǎn)與電機(jī)電角度相位的-30度點(diǎn)對(duì)齊。 有些伺服企業(yè)習(xí)慣于將編碼器的U相信號(hào)零點(diǎn)與電機(jī)電角度的零點(diǎn)直接對(duì)齊,為達(dá)到此目的,可以: 1.用3個(gè)阻值相等的電阻接成星型,然后將星型連接的3個(gè)電阻分別接入電機(jī)的UVW三相繞組引線; 2.以示波器觀察電機(jī)U相輸入與星型電阻的中點(diǎn),就可以近似得到電機(jī)的U相反電勢(shì)波形; 3.依據(jù)操作的方便程度,調(diào)整編碼器轉(zhuǎn)軸與電機(jī)軸的相對(duì)位置,或者編碼器外殼與電機(jī)外殼的相對(duì)位置; 4.一邊調(diào)整,一邊觀察編碼器的U相信號(hào)上升沿和電機(jī)U相反電勢(shì)波形由低到高的過零點(diǎn),最終使上升沿和過零點(diǎn)重合,鎖定編碼器與電機(jī)的相對(duì)位置關(guān)

13、系,完成對(duì)齊。 由于普通增量式編碼器不具備UVW相位信息,而Z信號(hào)也只能反映一圈內(nèi)的一個(gè)點(diǎn)位,不具備直接的相位對(duì)齊潛力,因而不作為本討論的話題。 絕對(duì)式編碼器的相位對(duì)齊方式 絕對(duì)式編碼器的相位對(duì)齊對(duì)于單圈和多圈而言,差別不大,其實(shí)都是在一圈內(nèi)對(duì)齊編碼器的檢測(cè)相位與電機(jī)電角度的相位。早期的絕對(duì)式編碼器會(huì)以單獨(dú)的引腳給出單圈相位的最高位的電平,利用此電平的0和1的翻轉(zhuǎn),也可以實(shí)現(xiàn)編碼器和電機(jī)的相位對(duì)齊,方法如下: 1.用一個(gè)直流電源給電機(jī)的UV繞組通以小于額定電流的直流電,U入,V出,將電機(jī)軸定向至一個(gè)平衡位置; 2.用示波器觀察絕對(duì)編碼器的最高計(jì)數(shù)位電平信號(hào); 3.調(diào)整編碼器轉(zhuǎn)軸與電機(jī)軸的相對(duì)位

14、置; 4.一邊調(diào)整,一邊觀察最高計(jì)數(shù)位信號(hào)的跳變沿,直到跳變沿準(zhǔn)確出現(xiàn)在電機(jī)軸的定向平衡位置處,鎖定編碼器與電機(jī)的相對(duì)位置關(guān)系; 5.來回扭轉(zhuǎn)電機(jī)軸,撒手后,若電機(jī)軸每次自由回復(fù)到平衡位置時(shí),跳變沿都能準(zhǔn)確復(fù)現(xiàn),則對(duì)齊有效。 這類絕對(duì)式編碼器目前已經(jīng)被采用EnDAT,BiSS,Hyperface等串行協(xié)議,以及日系專用串行協(xié)議的新型絕對(duì)式編碼器廣泛取代,因而最高位信號(hào)就不符存在了,此時(shí)對(duì)齊編碼器和電機(jī)相位的方法也有所變化,其中一種非常實(shí)用的方法是利用編碼器內(nèi)部的EEPROM,存儲(chǔ)編碼器隨機(jī)安裝在電機(jī)軸上后實(shí)測(cè)的相位,具體方法如下: 1.將編碼器隨機(jī)安裝在電機(jī)上,即固結(jié)編碼器轉(zhuǎn)軸與電機(jī)軸,以及編

15、碼器外殼與電機(jī)外殼; 2.用一個(gè)直流電源給電機(jī)的UV繞組通以小于額定電流的直流電,U入,V出,將電機(jī)軸定向至一個(gè)平衡位置; 3.用伺服驅(qū)動(dòng)器讀取絕對(duì)編碼器的單圈位置值,并存入編碼器內(nèi)部記錄電機(jī)電角度初始相位的EEPROM中; 4.對(duì)齊過程結(jié)束。 由于此時(shí)電機(jī)軸已定向于電角度相位的-30度方向,因此存入的編碼器內(nèi)部EEPROM中的位置檢測(cè)值就對(duì)應(yīng)電機(jī)電角度的-30度相位。此后,驅(qū)動(dòng)器將任意時(shí)刻的單圈位置檢測(cè)數(shù)據(jù)與這個(gè)存儲(chǔ)值做差,并根據(jù)電機(jī)極對(duì)數(shù)進(jìn)行必要的換算,再加上-30度,就可以得到該時(shí)刻的電機(jī)電角度相位。這種對(duì)齊方式需要編碼器和伺服驅(qū)動(dòng)器的支持和配合方能實(shí)現(xiàn),日系伺服的編碼器相位之所以不便于

16、最終用戶直接調(diào)整的根本原因就在于不肯向用戶提供這種對(duì)齊方式的功能界面和操作方法。這種對(duì)齊方法的一大好處是,只需向電機(jī)繞組提供確定相序和方向的轉(zhuǎn)子定向電流,無需調(diào)整編碼器和電機(jī)軸之間的角度關(guān)系,因而編碼器可以以任意初始角度直接安裝在電機(jī)上,且無需精細(xì),甚至簡(jiǎn)單的調(diào)整過程,操作簡(jiǎn)單,工藝性好。 如果絕對(duì)式編碼器既沒有可供使用的EEPROM,又沒有可供檢測(cè)的最高計(jì)數(shù)位引腳,則對(duì)齊方法會(huì)相對(duì)復(fù)雜。如果驅(qū)動(dòng)器支持單圈絕對(duì)位置信息的讀出和顯示,則可以考慮: 1.用一個(gè)直流電源給電機(jī)的UV繞組通以小于額定電流的直流電,U入,V出,將電機(jī)軸定向至一個(gè)平衡位置; 2.利用伺服驅(qū)動(dòng)器讀取并顯示絕對(duì)編碼器的單圈位置

17、值; 3.調(diào)整編碼器轉(zhuǎn)軸與電機(jī)軸的相對(duì)位置; 4.經(jīng)過上述調(diào)整,使顯示的單圈絕對(duì)位置值充分接近根據(jù)電機(jī)的極對(duì)數(shù)折算出來的電機(jī)-30度電角度所應(yīng)對(duì)應(yīng)的單圈絕對(duì)位置點(diǎn),鎖定編碼器與電機(jī)的相對(duì)位置關(guān)系; 5.來回扭轉(zhuǎn)電機(jī)軸,撒手后,若電機(jī)軸每次自由回復(fù)到平衡位置時(shí),上述折算位置點(diǎn)都能準(zhǔn)確復(fù)現(xiàn),則對(duì)齊有效。 如果用戶連絕對(duì)值信息都無法獲得,那么就只能借助原廠的專用工裝,一邊檢測(cè)絕對(duì)位置檢測(cè)值,一邊檢測(cè)電機(jī)電角度相位,利用工裝,調(diào)整編碼器和電機(jī)的相對(duì)角位置關(guān)系,將編碼器相位與電機(jī)電角度相位相互對(duì)齊,然后再鎖定。這樣一來,用戶就更加無從自行解決編碼器的相位對(duì)齊問題了。 個(gè)人推薦采用在EEPROM中存儲(chǔ)初始

18、安裝位置的方法,簡(jiǎn)單,實(shí)用,適應(yīng)性好,便于向用戶開放,以便用戶自行安裝編碼器,并完成電機(jī)電角度的相位整定。 正余弦編碼器的相位對(duì)齊方式 普通的正余弦編碼器具備一對(duì)正交的sin,cos 1Vp-p信號(hào),相當(dāng)于方波信號(hào)的增量式編碼器的AB正交信號(hào),每圈會(huì)重復(fù)許許多多個(gè)信號(hào)周期,比如2048等;以及一個(gè)窄幅的對(duì)稱三角波Index信號(hào),相當(dāng)于增量式編碼器的Z信號(hào),一圈一般出現(xiàn)一個(gè);這種正余弦編碼器實(shí)質(zhì)上也是一種增量式編碼器。另一種正余弦編碼器除了具備上述正交的sin、cos信號(hào)外,還具備一對(duì)一圈只出現(xiàn)一個(gè)信號(hào)周期的相互正交的1Vp-p的正弦型C、D信號(hào),如果以C信號(hào)為sin,則D信號(hào)為cos,通過si

19、n、cos信號(hào)的高倍率細(xì)分技術(shù),不僅可以使正余弦編碼器獲得比原始信號(hào)周期更為細(xì)密的名義檢測(cè)分辨率,比如2048線的正余弦編碼器經(jīng)2048細(xì)分后,就可以達(dá)到每轉(zhuǎn)400多萬線的名義檢測(cè)分辨率,當(dāng)前很多歐美伺服廠家都提供這類高分辨率的伺服系統(tǒng),而國(guó)內(nèi)廠家尚不多見;此外帶C、D信號(hào)的正余弦編碼器的C、D信號(hào)經(jīng)過細(xì)分后,還可以提供較高的每轉(zhuǎn)絕對(duì)位置信息,比如每轉(zhuǎn)2048個(gè)絕對(duì)位置,因此帶C、D信號(hào)的正余弦編碼器可以視作一種模擬式的單圈絕對(duì)編碼器。 采用這種編碼器的伺服電機(jī)的初始電角度相位對(duì)齊方式如下: 1.用一個(gè)直流電源給電機(jī)的UV繞組通以小于額定電流的直流電,U入,V出,將電機(jī)軸定向至一個(gè)平衡位置;

20、2.用示波器觀察正余弦編碼器的C信號(hào)波形; 3.調(diào)整編碼器轉(zhuǎn)軸與電機(jī)軸的相對(duì)位置; 4.一邊調(diào)整,一邊觀察C信號(hào)波形,直到由低到高的過零點(diǎn)準(zhǔn)確出現(xiàn)在電機(jī)軸的定向平衡位置處,鎖定編碼器與電機(jī)的相對(duì)位置關(guān)系; 5.來回扭轉(zhuǎn)電機(jī)軸,撒手后,若電機(jī)軸每次自由回復(fù)到平衡位置時(shí),過零點(diǎn)都能準(zhǔn)確復(fù)現(xiàn),則對(duì)齊有效。 撤掉直流電源后,驗(yàn)證如下: 1.用示波器觀察編碼器的C相信號(hào)和電機(jī)的UV線反電勢(shì)波形; 2.轉(zhuǎn)動(dòng)電機(jī)軸,編碼器的C相信號(hào)由低到高的過零點(diǎn)與電機(jī)的UV線反電勢(shì)波形由低到高的過零點(diǎn)重合。 這種驗(yàn)證方法,也可以用作對(duì)齊方法。 此時(shí)C信號(hào)的過零點(diǎn)與電機(jī)電角度相位的-30度點(diǎn)對(duì)齊。如果想直接和電機(jī)電角度的0

21、度點(diǎn)對(duì)齊,可以考慮: 1.用3個(gè)阻值相等的電阻接成星型,然后將星型連接的3個(gè)電阻分別接入電機(jī)的UVW三相繞組引線; 2.以示波器觀察電機(jī)U相輸入與星型電阻的中點(diǎn),就可以近似得到電機(jī)的U相反電勢(shì)波形; 3.調(diào)整編碼器轉(zhuǎn)軸與電機(jī)軸的相對(duì)位置; 4.一邊調(diào)整,一邊觀察編碼器的C相信號(hào)由低到高的過零點(diǎn)和電機(jī)U相反電勢(shì)波形由低到高的過零點(diǎn),最終使2個(gè)過零點(diǎn)重合,鎖定編碼器與電機(jī)的相對(duì)位置關(guān)系,完成對(duì)齊。 由于普通正余弦編碼器不具備一圈之內(nèi)的相位信息,而Index信號(hào)也只能反映一圈內(nèi)的一個(gè)點(diǎn)位,不具備直接的相位對(duì)齊潛力,因而在此也不作為討論的話題。 如果可接入正余弦編碼器的伺服驅(qū)動(dòng)器能夠?yàn)橛脩籼峁腃、D

22、中獲取的單圈絕對(duì)位置信息,則可以考慮: 1.用一個(gè)直流電源給電機(jī)的UV繞組通以小于額定電流的直流電,U入,V出,將電機(jī)軸定向至一個(gè)平衡位置; 2.利用伺服驅(qū)動(dòng)器讀取并顯示從C、D信號(hào)中獲取的單圈絕對(duì)位置信息; 3.調(diào)整旋變軸與電機(jī)軸的相對(duì)位置; 4.經(jīng)過上述調(diào)整,使顯示的絕對(duì)位置值充分接近根據(jù)電機(jī)的極對(duì)數(shù)折算出來的電機(jī)-30度電角度所應(yīng)對(duì)應(yīng)的絕對(duì)位置點(diǎn),鎖定編碼器與電機(jī)的相對(duì)位置關(guān)系; 5.來回扭轉(zhuǎn)電機(jī)軸,撒手后,若電機(jī)軸每次自由回復(fù)到平衡位置時(shí),上述折算絕對(duì)位置點(diǎn)都能準(zhǔn)確復(fù)現(xiàn),則對(duì)齊有效。 此后可以在撤掉直流電源后,得到與前面基本相同的對(duì)齊驗(yàn)證效果: 1.用示波器觀察正余弦編碼器的C相信號(hào)和

23、電機(jī)的UV線反電勢(shì)波形; 2.轉(zhuǎn)動(dòng)電機(jī)軸,驗(yàn)證編碼器的C相信號(hào)由低到高的過零點(diǎn)與電機(jī)的UV線反電勢(shì)波形由低到高的過零點(diǎn)重合。 如果利用驅(qū)動(dòng)器內(nèi)部的EEPROM等非易失性存儲(chǔ)器,也可以存儲(chǔ)正余弦編碼器隨機(jī)安裝在電機(jī)軸上后實(shí)測(cè)的相位,具體方法如下: 1.將正余弦隨機(jī)安裝在電機(jī)上,即固結(jié)編碼器轉(zhuǎn)軸與電機(jī)軸,以及編碼器外殼與電機(jī)外殼; 2.用一個(gè)直流電源給電機(jī)的UV繞組通以小于額定電流的直流電,U入,V出,將電機(jī)軸定向至一個(gè)平衡位置; 3.用伺服驅(qū)動(dòng)器讀取由C、D信號(hào)解析出來的單圈絕對(duì)位置值,并存入驅(qū)動(dòng)器內(nèi)部記錄電機(jī)電角度初始安裝相位的EEPROM等非易失性存儲(chǔ)器中; 4.對(duì)齊過程結(jié)束。 由于此時(shí)電機(jī)

24、軸已定向于電角度相位的-30度方向,因此存入的驅(qū)動(dòng)器內(nèi)部EEPROM等非易失性存儲(chǔ)器中的位置檢測(cè)值就對(duì)應(yīng)電機(jī)電角度的-30度相位。此后,驅(qū)動(dòng)器將任意時(shí)刻由編碼器解析出來的與電角度相關(guān)的單圈絕對(duì)位置值與這個(gè)存儲(chǔ)值做差,并根據(jù)電機(jī)極對(duì)數(shù)進(jìn)行必要的換算,再加上-30度,就可以得到該時(shí)刻的電機(jī)電角度相位。 這種對(duì)齊方式需要伺服驅(qū)動(dòng)器的在國(guó)內(nèi)和操作上予以支持和配合方能實(shí)現(xiàn),而且由于記錄電機(jī)電角度初始相位的EEPROM等非易失性存儲(chǔ)器位于伺服驅(qū)動(dòng)器中,因此一旦對(duì)齊后,電機(jī)就和驅(qū)動(dòng)器事實(shí)上綁定了,如果需要更換電機(jī)、正余弦編碼器、或者驅(qū)動(dòng)器,都需要重新進(jìn)行初始安裝相位的對(duì)齊操作,并重新綁定電機(jī)和驅(qū)動(dòng)器的配套關(guān)

25、系。 旋轉(zhuǎn)變壓器的相位對(duì)齊方式 旋轉(zhuǎn)變壓器簡(jiǎn)稱旋變,是由經(jīng)過特殊電磁設(shè)計(jì)的高性能硅鋼疊片和漆包線構(gòu)成的,相比于采用光電技術(shù)的編碼器而言,具有耐熱,耐振。耐沖擊,耐油污,甚至耐腐蝕等惡劣工作環(huán)境的適應(yīng)能力,因而為武器系統(tǒng)等工況惡劣的應(yīng)用廣泛采用,一對(duì)極(單速)的旋變可以視作一種單圈絕對(duì)式反饋系統(tǒng),應(yīng)用也最為廣泛,因而在此僅以單速旋變?yōu)橛懻搶?duì)象,多速旋變與伺服電機(jī)配套,個(gè)人認(rèn)為其極對(duì)數(shù)最好采用電機(jī)極對(duì)數(shù)的約數(shù),一便于電機(jī)度的對(duì)應(yīng)和極對(duì)數(shù)分解。 旋變的信號(hào)引線一般為6根,分為3組,分別對(duì)應(yīng)一個(gè)激勵(lì)線圈,和2個(gè)正交的感應(yīng)線圈,激勵(lì)線圈接受輸入的正弦型激勵(lì)信號(hào),感應(yīng)線圈依據(jù)旋變轉(zhuǎn)定子的相互角位置關(guān)系,感

26、應(yīng)出來具有SIN和COS包絡(luò)的檢測(cè)信號(hào)。旋變SIN和COS輸出信號(hào)是根據(jù)轉(zhuǎn)定子之間的角度對(duì)激勵(lì)正弦信號(hào)的調(diào)制結(jié)果,如果激勵(lì)信號(hào)是sint,轉(zhuǎn)定子之間的角度為,則SIN信號(hào)為sintsin,則COS信號(hào)為sintcos,根據(jù)SIN,COS信號(hào)和原始的激勵(lì)信號(hào),通過必要的檢測(cè)電路,就可以獲得較高分辨率的位置檢測(cè)結(jié)果,目前商用旋變系統(tǒng)的檢測(cè)分辨率可以達(dá)到每圈2的12次方,即4096,而科學(xué)研究和航空航天系統(tǒng)甚至可以達(dá)到2的20次方以上,不過體積和成本也都非??捎^。 商用旋變與伺服電機(jī)電角度相位的對(duì)齊方法如下: 1.用一個(gè)直流電源給電機(jī)的UV繞組通以小于額定電流的直流電,U入,V出; 2.然后用示波器

27、觀察旋變的SIN線圈的信號(hào)引線輸出; 3.依據(jù)操作的方便程度,調(diào)整電機(jī)軸上的旋變轉(zhuǎn)子與電機(jī)軸的相對(duì)位置,或者旋變定子與電機(jī)外殼的相對(duì)位置; 4.一邊調(diào)整,一邊觀察旋變SIN信號(hào)的包絡(luò),一直調(diào)整到信號(hào)包絡(luò)的幅值完全歸零,鎖定旋變; 5.來回扭轉(zhuǎn)電機(jī)軸,撒手后,若電機(jī)軸每次自由回復(fù)到平衡位置時(shí),信號(hào)包絡(luò)的幅值過零點(diǎn)都能準(zhǔn)確復(fù)現(xiàn),則對(duì)齊有效 。 撤掉直流電源,進(jìn)行對(duì)齊驗(yàn)證: 1.用示波器觀察旋變的SIN信號(hào)和電機(jī)的UV線反電勢(shì)波形; 2.轉(zhuǎn)動(dòng)電機(jī)軸,驗(yàn)證旋變的SIN信號(hào)包絡(luò)過零點(diǎn)與電機(jī)的UV線反電勢(shì)波形由低到高的過零點(diǎn)重合。 這個(gè)驗(yàn)證方法,也可以用作對(duì)齊方法。 此時(shí)SIN信號(hào)包絡(luò)的過零點(diǎn)與電機(jī)電角度

28、相位的-30度點(diǎn)對(duì)齊。如果想直接和電機(jī)電角度的0度點(diǎn)對(duì)齊,可以考慮: 1.用3個(gè)阻值相等的電阻接成星型,然后將星型連接的3個(gè)電阻分別接入電機(jī)的UVW三相繞組引線; 2.以示波器觀察電機(jī)U相輸入與星型電阻的中點(diǎn),就可以近似得到電機(jī)的U相反電勢(shì)波形; 3.依據(jù)操作的方便程度,調(diào)整編碼器轉(zhuǎn)軸與電機(jī)軸的相對(duì)位置,或者編碼器外殼與電機(jī)外殼的相對(duì)位置; 4.一邊調(diào)整,一邊觀察旋變的SIN信號(hào)包絡(luò)的過零點(diǎn)和電機(jī)U相反電勢(shì)波形由低到高的過零點(diǎn),最終使這2個(gè)過零點(diǎn)重合,鎖定編碼器與電機(jī)的相對(duì)位置關(guān)系,完成對(duì)齊。 需要指出的是,在上述操作中需有效區(qū)分旋變的SIN包絡(luò)信號(hào)中的正半周和負(fù)半周。由于SIN信號(hào)是以轉(zhuǎn)定子

29、之間的角度為的sin值對(duì)激勵(lì)信號(hào)的調(diào)制結(jié)果,因而與sin的正半周對(duì)應(yīng)的SIN信號(hào)包絡(luò)中,被調(diào)制的激勵(lì)信號(hào)與原始激勵(lì)信號(hào)同相,而與sin的負(fù)半周對(duì)應(yīng)的SIN信號(hào)包絡(luò)中,被調(diào)制的激勵(lì)信號(hào)與原始激勵(lì)信號(hào)反相,據(jù)此可以區(qū)別和判斷旋變輸出的SIN包絡(luò)信號(hào)波形中的正半周和負(fù)半周。對(duì)齊時(shí),需要取sin由負(fù)半周向正半周過渡點(diǎn)對(duì)應(yīng)的SIN包絡(luò)信號(hào)的過零點(diǎn),如果取反了,或者未加準(zhǔn)確判斷的話,對(duì)齊后的電角度有可能錯(cuò)位180度,從而造成速度外環(huán)進(jìn)入正反饋。如果可接入旋變的伺服驅(qū)動(dòng)器能夠?yàn)橛脩籼峁男冃盘?hào)中獲取的與電機(jī)電角度相關(guān)的絕對(duì)位置信息,則可以考慮: 1.用一個(gè)直流電源給電機(jī)的UV繞組通以小于額定電流的直流電,

30、U入,V出,將電機(jī)軸定向至一個(gè)平衡位置; 2.利用伺服驅(qū)動(dòng)器讀取并顯示從旋變信號(hào)中獲取的與電機(jī)電角度相關(guān)的絕對(duì)位置信息; 3.依據(jù)操作的方便程度,調(diào)整旋變軸與電機(jī)軸的相對(duì)位置,或者旋變外殼與電機(jī)外殼的相對(duì)位置; 4.經(jīng)過上述調(diào)整,使顯示的絕對(duì)位置值充分接近根據(jù)電機(jī)的極對(duì)數(shù)折算出來的電機(jī)-30度電角度所應(yīng)對(duì)應(yīng)的絕對(duì)位置點(diǎn),鎖定編碼器與電機(jī)的相對(duì)位置關(guān)系; 5.來回扭轉(zhuǎn)電機(jī)軸,撒手后,若電機(jī)軸每次自由回復(fù)到平衡位置時(shí),上述折算絕對(duì)位置點(diǎn)都能準(zhǔn)確復(fù)現(xiàn),則對(duì)齊有效。 此后可以在撤掉直流電源后,得到與前面基本相同的對(duì)齊驗(yàn)證效果: 1.用示波器觀察旋變的SIN信號(hào)和電機(jī)的UV線反電勢(shì)波形; 2.轉(zhuǎn)動(dòng)電機(jī)軸,驗(yàn)證旋變的SIN信號(hào)包絡(luò)過零點(diǎn)與電機(jī)的UV線反電勢(shì)波形由低到高的過零點(diǎn)重合。 如果利用驅(qū)動(dòng)器內(nèi)部的EEPROM等非易失性存儲(chǔ)器,也可以存儲(chǔ)旋變隨機(jī)安裝在電機(jī)軸上后實(shí)測(cè)的相位,具體方法如下: 1.將旋變隨機(jī)安裝在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論