高等數(shù)學(xué)基礎(chǔ)知識點94頁完美.doc_第1頁
高等數(shù)學(xué)基礎(chǔ)知識點94頁完美.doc_第2頁
高等數(shù)學(xué)基礎(chǔ)知識點94頁完美.doc_第3頁
高等數(shù)學(xué)基礎(chǔ)知識點94頁完美.doc_第4頁
高等數(shù)學(xué)基礎(chǔ)知識點94頁完美.doc_第5頁
已閱讀5頁,還剩70頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、高高等數(shù)學(xué)基本知識點 1一、函數(shù)與極限1、集合的概念一般地我們把研究對象統(tǒng)稱為元素,把一些元素組成的總體叫集合(簡稱集)。集合具有確定性(給定集合的元素必須是確定的)和互異性(給定集合中的元素是互不相同的)。比如“身材較高的人”不能構(gòu)成集合,因為它的元素不是確定的。我們通常用大字拉丁字母A、B、C、表示集合,用小寫拉丁字母a、b、c表示集合中的元素。如果a是集合A中的元素,就說a屬于A,記作:aA,否則就說a不屬于A,記作:aA。 、全體非負整數(shù)組成的集合叫做非負整數(shù)集(或自然數(shù)集)。記作N、所有正整數(shù)組成的集合叫做正整數(shù)集。記作N+或N+。、全體整數(shù)組成的集合叫做整數(shù)集。記作Z。、全體有理數(shù)

2、組成的集合叫做有理數(shù)集。記作Q。、全體實數(shù)組成的集合叫做實數(shù)集。記作R。集合的表示方法、列舉法:把集合的元素一一列舉出來,并用“”括起來表示集合、描述法:用集合所有元素的共同特征來表示集合。集合間的基本關(guān)系、子集:一般地,對于兩個集合A、B,如果集合A中的任意一個元素都是集合B的元素,我們就說A、B有包含關(guān)系,稱集合A為集合B的子集,記作A B(或B A)。相等:如何集合A是集合B的子集,且集合B是集合A的子集,此時集合A中的元素與集合B中的元素完全一樣,因此集合A與集合B相等,記作AB。、真子集:如何集合A是集合B的子集,但存在一個元素屬于B但不屬于A,我們稱集合A是集合B的真子集。、空集:

3、我們把不含任何元素的集合叫做空集。記作 ,并規(guī)定,空集是任何集合的子集。、由上述集合之間的基本關(guān)系,可以得到下面的結(jié)論:、任何一個集合是它本身的子集。即A A、對于集合A、B、C,如果A是B的子集,B是C的子集,則A是C的子集。、我們可以把相等的集合叫做“等集”,這樣的話子集包括“真子集”和“等集”。集合的基本運算、并集:一般地,由所有屬于集合A或?qū)儆诩螧的元素組成的集合稱為A與B的并集。記作AB。(在求并集時,它們的公共元素在并集中只能出現(xiàn)一次。)即ABx|xA,或xB。、交集:一般地,由所有屬于集合A且屬于集合B的元素組成的集合稱為A與B的交集。記作AB。即ABx|xA,且xB。、補集:

4、全集:一般地,如果一個集合含有我們所研究問題中所涉及的所有元素,那么就稱這個集合為全集。通常記作U。補集:對于一個集合A,由全集U中不屬于集合A的所有元素組成的集合稱為集合A相對于全集U的補集。簡稱為集合A的補集,記作CUA。即CUAx|xU,且x A。集合中元素的個數(shù)、有限集:我們把含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。、用card來表示有限集中元素的個數(shù)。例如Aa,b,c,則card(A)=3。、一般地,對任意兩個集合A、B,有card(A)+card(B)=card(AB)+card(AB)我的問題:1、學(xué)校里開運動會,設(shè)Ax|x是參加一百米跑的同學(xué),Bx|x是

5、參加二百米跑的同學(xué),Cx|x是參加四百米跑的同學(xué)。學(xué)校規(guī)定,每個參加上述比賽的同學(xué)最多只能參加兩項,請你用集合的運算說明這項規(guī)定,并解釋以下集合運算的含義。、AB;、AB。2、在平面直角坐標(biāo)系中,集合C(x,y)|y=x表示直線yx,從這個角度看,集合D=(x,y)|方程組:2x-y=1,x+4y=5表示什么?集合C、D之間有什么關(guān)系?請分別用集合語言和幾何語言說明這種關(guān)系。3、已知集合A=x|1x3,Bx|(x-1)(x-a)=0。試判斷B是不是A的子集?是否存在實數(shù)a使AB成立?4、對于有限集合A、B、C,能不能找出這三個集合中元素個數(shù)與交集、并集元素個數(shù)之間的關(guān)系呢?5、無限集合A1,2

6、,3,4,n,B2,4,6,8,2n,你能設(shè)計一種比較這兩個集合中元素個數(shù)多少的方法嗎?2、常量與變量、變量的定義:我們在觀察某一現(xiàn)象的過程時,常常會遇到各種不同的量,其中有的量在過程中不起變化,我們把其稱之為常量;有的量在過程中是變化的,也就是可以取不同的數(shù)值,我們則把其稱之為變量。注:在過程中還有一種量,它雖然是變化的,但是它的變化相對于所研究的對象是極其微小的,我們則把它看作常量。、變量的表示:如果變量的變化是連續(xù)的,則常用區(qū)間來表示其變化范圍。在數(shù)軸上來說,區(qū)間是指介于某兩點之間的線段上點的全體。區(qū)間的名稱區(qū)間的滿足的不等式區(qū)間的記號區(qū)間在數(shù)軸上的表示閉區(qū)間axba,b開區(qū)間axb(a

7、,b)半開區(qū)間axb或axb(a,b或a,b)以上我們所述的都是有限區(qū)間,除此之外,還有無限區(qū)間:a,+):表示不小于a的實數(shù)的全體,也可記為:ax+;(-,b):表示小于b的實數(shù)的全體,也可記為:-xb;(-,+):表示全體實數(shù),也可記為:-x+注:其中-和+,分別讀作負無窮大和正無窮大,它們不是數(shù),僅僅是記號。、鄰域:設(shè)與是兩個實數(shù),且0.滿足不等式x-的實數(shù)x的全體稱為點的鄰域,點稱為此鄰域的中心,稱為此鄰域的半徑。2、函數(shù)、函數(shù)的定義:如果當(dāng)變量x在其變化范圍內(nèi)任意取定一個數(shù)值時,量y按照一定的法則f總有確定的數(shù)值與它對應(yīng),則稱y是x的函數(shù)。變量x的變化范圍叫做這個函數(shù)的定義域。通常x

8、叫做自變量,y叫做函數(shù)值(或因變量),變量y的變化范圍叫做這個函數(shù)的值域。注:為了表明y是x的函數(shù),我們用記號y=f(x)、y=F(x)等等來表示。這里的字母f、F表示y與x之間的對應(yīng)法則即函數(shù)關(guān)系,它們是可以任意采用不同的字母來表示的。如果自變量在定義域內(nèi)任取一個確定的值時,函數(shù)只有一個確定的值和它對應(yīng),這種函數(shù)叫做單值函數(shù),否則叫做多值函數(shù)。這里我們只討論單值函數(shù)。、函數(shù)相等由函數(shù)的定義可知,一個函數(shù)的構(gòu)成要素為:定義域、對應(yīng)關(guān)系和值域。由于值域是由定義域和對應(yīng)關(guān)系決定的,所以,如果兩個函數(shù)的定義域和對應(yīng)關(guān)系完全一致,我們就稱兩個函數(shù)相等。、域函數(shù)的表示方法a):解析法:用數(shù)學(xué)式子表示自變

9、量和因變量之間的對應(yīng)關(guān)系的方法即是解析法。例:直角坐標(biāo)系中,半徑為r、圓心在原點的圓的方程是:x2+y2=r2b):表格法:將一系列的自變量值與對應(yīng)的函數(shù)值列成表來表示函數(shù)關(guān)系的方法即是表格法。例:在實際應(yīng)用中,我們經(jīng)常會用到的平方表,三角函數(shù)表等都是用表格法表示的函數(shù)。c):圖示法:用坐標(biāo)平面上曲線來表示函數(shù)的方法即是圖示法。一般用橫坐標(biāo)表示自變量,縱坐標(biāo)表示因變量。例:直角坐標(biāo)系中,半徑為r、圓心在原點的圓用圖示法表示為:3、函數(shù)的簡單性態(tài)、函數(shù)的有界性:如果對屬于某一區(qū)間I的所有x值總有f(x)M成立,其中M是一個與x無關(guān)的常數(shù),那么我們就稱f(x)在區(qū)間I有界,否則便稱無界。注:一個函

10、數(shù),如果在其整個定義域內(nèi)有界,則稱為有界函數(shù)例題:函數(shù)cosx在(-,+)內(nèi)是有界的.、函數(shù)的單調(diào)性:如果函數(shù)在區(qū)間(a,b)內(nèi)隨著x增大而增大,即:對于(a,b)內(nèi)任意兩點x1及x2,當(dāng)x1x2時,有 ,則稱函數(shù)在區(qū)間(a,b)內(nèi)是單調(diào)增加的。如果函數(shù)在區(qū)間(a,b)內(nèi)隨著x增大而減小,即:對于(a,b)內(nèi)任意兩點x1及x2,當(dāng)x1x2時,有,則稱函數(shù)在區(qū)間(a,b)內(nèi)是單調(diào)減小的。例題:函數(shù)=x2在區(qū)間(-,0)上是單調(diào)減小的,在區(qū)間(0,+)上是單調(diào)增加的。、函數(shù)的奇偶性如果函數(shù)對于定義域內(nèi)的任意x都滿足=,則叫做偶函數(shù);如果函數(shù)對于定義域內(nèi)的任意x都滿足=-,則叫做奇函數(shù)。注:偶函數(shù)的

11、圖形關(guān)于y軸對稱,奇函數(shù)的圖形關(guān)于原點對稱。、函數(shù)的周期性對于函數(shù),若存在一個不為零的數(shù)l,使得關(guān)系式對于定義域內(nèi)任何x值都成立,則叫做周期函數(shù),l是的周期。注:我們說的周期函數(shù)的周期是指最小正周期。例題:函數(shù)是以2為周期的周期函數(shù);函數(shù)tgx是以為周期的周期函數(shù)。4、反函數(shù)、反函數(shù)的定義:設(shè)有函數(shù),若變量y在函數(shù)的值域內(nèi)任取一值y0時,變量x在函數(shù)的定義域內(nèi)必有一值x0與之對應(yīng),即,那末變量x是變量y的函數(shù).這個函數(shù)用來表示,稱為函數(shù)的反函數(shù).注:由此定義可知,函數(shù)也是函數(shù)的反函數(shù)。 、反函數(shù)的存在定理:若在(a,b)上嚴(yán)格增(減),其值域為 R,則它的反函數(shù)必然在R上確定,且嚴(yán)格增(減).

12、注:嚴(yán)格增(減)即是單調(diào)增(減)例題:y=x2,其定義域為(-,+),值域為0,+).對于y取定的非負值,可求得x=.若我們不加條件,由y的值就不能唯一確定x的值,也就是在區(qū)間(-,+)上,函數(shù)不是嚴(yán)格增(減),故其沒有反函數(shù)。如果我們加上條件,要求x0,則對y0、x=就是y=x2在要求x0時的反函數(shù)。即是:函數(shù)在此要求下嚴(yán)格增(減). 、反函數(shù)的性質(zhì):在同一坐標(biāo)平面內(nèi),與的圖形是關(guān)于直線y=x對稱的。例題:函數(shù)與函數(shù)互為反函數(shù),則它們的圖形在同一直角坐標(biāo)系中是關(guān)于直線y=x對稱的。如右圖所示: 5、復(fù)合函數(shù)復(fù)合函數(shù)的定義:若y是u的函數(shù):,而u又是x的函數(shù):,且的函數(shù)值的全部或部分在的定義域

13、內(nèi),那末,y通過u的聯(lián)系也是x的函數(shù),我們稱后一個函數(shù)是由函數(shù)及復(fù)合而成的函數(shù),簡稱復(fù)合函數(shù),記作,其中u叫做中間變量。注:并不是任意兩個函數(shù)就能復(fù)合;復(fù)合函數(shù)還可以由更多函數(shù)構(gòu)成。例題:函數(shù)與函數(shù)是不能復(fù)合成一個函數(shù)的。因為對于的定義域(-,+)中的任何x值所對應(yīng)的u值(都大于或等于2),使都沒有定義。6、初等函數(shù)、基本初等函數(shù):我們最常用的有五種基本初等函數(shù),分別是:指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)及反三角函數(shù)。下面我們用表格來把它們總結(jié)一下:函數(shù)名稱函數(shù)的記號函數(shù)的圖形函數(shù)的性質(zhì)指數(shù)函數(shù)a):不論x為何值,y總為正數(shù);b):當(dāng)x=0時,y=1.對數(shù)函數(shù)a):其圖形總位于y軸右側(cè),并過

14、(1,0)點b):當(dāng)a1時,在區(qū)間(0,1)的值為負;在區(qū)間(-,+)的值為正;在定義域內(nèi)單調(diào)增.冪函數(shù)a為任意實數(shù)這里只畫出部分函數(shù)圖形的一部分。令a=m/na):當(dāng)m為偶數(shù)n為奇數(shù)時,y是偶函數(shù);b):當(dāng)m,n都是奇數(shù)時,y是奇函數(shù);c):當(dāng)m奇n偶時,y在(-,0)無意義.三角函數(shù)(正弦函數(shù))這里只寫出了正弦函數(shù)a):正弦函數(shù)是以2為周期的周期函數(shù)b):正弦函數(shù)是奇函數(shù)且反三角函數(shù)(反正弦函數(shù))這里只寫出了反正弦函數(shù)a):由于此函數(shù)為多值函數(shù),因此我們此函數(shù)值限制在-/2,/2上,并稱其為反正弦函數(shù)的主值.、初等函數(shù):由基本初等函數(shù)與常數(shù)經(jīng)過有限次的有理運算及有限次的函數(shù)復(fù)合所產(chǎn)生并且能

15、用一個解析式表出的函數(shù)稱為初等函數(shù).例題:是初等函數(shù)。7、雙曲函數(shù)及反雙曲函數(shù)、雙曲函數(shù):在應(yīng)用中我們經(jīng)常遇到的雙曲函數(shù)是:(用表格來描述)函數(shù)的名稱函數(shù)的表達式函數(shù)的圖形函數(shù)的性質(zhì)雙曲正弦a):其定義域為:(-,+);b):是奇函數(shù);c):在定義域內(nèi)是單調(diào)增雙曲余弦a):其定義域為:(-,+);b):是偶函數(shù);c):其圖像過點(0,1);雙曲正切a):其定義域為:(-,+);b):是奇函數(shù);c):其圖形夾在水平直線y=1及y=-1之間;在定域內(nèi)單調(diào)增;我們再來看一下雙曲函數(shù)與三角函數(shù)的區(qū)別:雙曲函數(shù)的性質(zhì)三角函數(shù)的性質(zhì)shx與thx是奇函數(shù),chx是偶函數(shù)sinx與tanx是奇函數(shù),cosx

16、是偶函數(shù)它們都不是周期函數(shù)都是周期函數(shù)雙曲函數(shù)也有和差公式:、反雙曲函數(shù):雙曲函數(shù)的反函數(shù)稱為反雙曲函數(shù).a):反雙曲正弦函數(shù) 其定義域為:(-,+);b):反雙曲余弦函數(shù) 其定義域為:1,+);c):反雙曲正切函數(shù) 其定義域為:(-1,+1);8、數(shù)列的極限我們先來回憶一下初等數(shù)學(xué)中學(xué)習(xí)的數(shù)列的概念。 、數(shù)列:若按照一定的法則,有第一個數(shù)a1,第二個數(shù)a2,依次排列下去,使得任何一個正整數(shù)n對應(yīng)著一個確定的數(shù)an,那末,我們稱這列有次序的數(shù)a1,a2,an,為數(shù)列.數(shù)列中的每一個數(shù)叫做數(shù)列的項。第n項an叫做數(shù)列的一般項或通項.注:我們也可以把數(shù)列an看作自變量為正整數(shù)n的函數(shù),即:an=,

17、它的定義域是全體正整數(shù) 、極限:極限的概念是求實際問題的精確解答而產(chǎn)生的。例:我們可通過作圓的內(nèi)接正多邊形,近似求出圓的面積。設(shè)有一圓,首先作圓內(nèi)接正六邊形,把它的面積記為A1;再作圓的內(nèi)接正十二邊形,其面積記為A2;再作圓的內(nèi)接正二十四邊形,其面積記為A3;依次循下去(一般把內(nèi)接正62n-1邊形的面積記為An)可得一系列內(nèi)接正多邊形的面積:A1,A2,A3,An,它們就構(gòu)成一列有序數(shù)列。我們可以發(fā)現(xiàn),當(dāng)內(nèi)接正多邊形的邊數(shù)無限增加時,An也無限接近某一確定的數(shù)值(圓的面積),這個確定的數(shù)值在數(shù)學(xué)上被稱為數(shù)列A1,A2,A3,An, 當(dāng)n(讀作n趨近于無窮大)的極限。注:上面這個例子就是我國古代

18、數(shù)學(xué)家劉徽(公元三世紀(jì))的割圓術(shù)。 、數(shù)列的極限:一般地,對于數(shù)列來說,若存在任意給定的正數(shù)(不論其多么小),總存在正整數(shù)N,使得對于nN時的一切不等式都成立,那末就稱常數(shù)a是數(shù)列的極限,或者稱數(shù)列收斂于a .記作:或注:此定義中的正數(shù)只有任意給定,不等式才能表達出與a無限接近的意思。且定義中的正整數(shù)N與任意給定的正數(shù)是有關(guān)的,它是隨著的給定而選定的。、數(shù)列的極限的幾何解釋:在此我們可能不易理解這個概念,下面我們再給出它的一個幾何解釋,以使我們能理解它。數(shù)列極限為a的一個幾何解釋:將常數(shù)a及數(shù)列在數(shù)軸上用它們的對應(yīng)點表示出來,再在數(shù)軸上作點a的鄰域即開區(qū)間(a-,a+),如下圖所示: 因不等式

19、與不等式等價,故當(dāng)nN時,所有的點都落在開區(qū)間(a-,a+)內(nèi),而只有有限個(至多只有N個)在此區(qū)間以外。注:至于如何求數(shù)列的極限,我們在以后會學(xué)習(xí)到,這里我們不作討論。 、數(shù)列的有界性:對于數(shù)列,若存在著正數(shù)M,使得一切都滿足不等式M,則稱數(shù)列是有界的,若正數(shù)M不存在,則可說數(shù)列是無界的。定理:若數(shù)列收斂,那末數(shù)列一定有界。注:有界的數(shù)列不一定收斂,即:數(shù)列有界是數(shù)列收斂的必要條件,但不是充分條件。例:數(shù)列 1,-1,1,-1,(-1)n+1, 是有界的,但它是發(fā)散的。9、函數(shù)的極限前面我們學(xué)習(xí)了數(shù)列的極限,已經(jīng)知道數(shù)列可看作一類特殊的函數(shù),即自變量取 1內(nèi)的正整數(shù),若自變量不再限于正整數(shù)的

20、順序,而是連續(xù)變化的,就成了函數(shù)。下面我們來學(xué)習(xí)函數(shù)的極限.函數(shù)的極值有兩種情況:a):自變量無限增大;b):自變量無限接近某一定點x0,如果在這時,函數(shù)值無限接近于某一常數(shù)A,就叫做函數(shù)存在極值。我們已知道函數(shù)的極值的情況,那么函數(shù)的極限如何呢 ?下面我們結(jié)合著數(shù)列的極限來學(xué)習(xí)一下函數(shù)極限的概念!、函數(shù)的極限(分兩種情況)a):自變量趨向無窮大時函數(shù)的極限定義:設(shè)函數(shù),若對于任意給定的正數(shù)(不論其多么小),總存在著正數(shù)X,使得對于適合不等式 的一切x,所對應(yīng)的函數(shù)值都滿足不等式 那末常數(shù)A就叫做函數(shù)當(dāng)x時的極限,記作:下面我們用表格把函數(shù)的極限與數(shù)列的極限對比一下:數(shù)列的極限的定義函數(shù)的極限

21、的定義存在數(shù)列與常數(shù)A,任給一正數(shù)0,總可找到一正整數(shù)N,對于nN的所有都滿足則稱數(shù)列,當(dāng)x時收斂于A記:。存在函數(shù)與常數(shù)A,任給一正數(shù)0,總可找到一正數(shù)X,對于適合的一切x,都滿足,函數(shù)當(dāng)x時的極限為A,記:。從上表我們發(fā)現(xiàn)了什么 ?試思考之b):自變量趨向有限值時函數(shù)的極限。我們先來看一個例子.例:函數(shù),當(dāng)x1時函數(shù)值的變化趨勢如何?函數(shù)在x=1處無定義.我們知道對實數(shù)來講,在數(shù)軸上任何一個有限的范圍內(nèi),都有無窮多個點,為此我們把x1時函數(shù)值的變化趨勢用表列出,如下圖:從中我們可以看出x1時,2.而且只要x與1有多接近,就與2有多接近.或說:只要與2只差一個微量,就一定可以找到一個,當(dāng)時滿

22、足定義:設(shè)函數(shù)在某點x0的某個去心鄰域內(nèi)有定義,且存在數(shù)A,如果對任意給定的(不論其多么小),總存在正數(shù),當(dāng)0時,則稱函數(shù)當(dāng)xx0時存在極限,且極限為A,記:。注:在定義中為什么是在去心鄰域內(nèi)呢?這是因為我們只討論xx0的過程,與x=x0出的情況無關(guān)。此定義的核心問題是:對給出的,是否存在正數(shù),使其在去心鄰域內(nèi)的x均滿足不等式。有些時候,我們要用此極限的定義來證明函數(shù)的極限為 A,其證明方法是怎樣的呢? a):先任取0; b):寫出不等式;c):解不等式能否得出去心鄰域0,若能; d):則對于任給的0,總能找出,當(dāng)0時,成立,因此10、函數(shù)極限的運算規(guī)則前面已經(jīng)學(xué)習(xí)了數(shù)列極限的運算規(guī)則,我們知

23、道數(shù)列可作為一類特殊的函數(shù),故函數(shù)極限的運算規(guī)則與數(shù)列極限的運算規(guī)則相似。、函數(shù)極限的運算規(guī)則 若已知xx0(或x)時,.則: 推論: 在求函數(shù)的極限時,利用上述規(guī)則就可把一個復(fù)雜的函數(shù)化為若干個簡單的函數(shù)來求極限。例題:求解答:例題:求此題如果像上題那樣求解,則會發(fā)現(xiàn)此函數(shù)的極限不存在.我們通過觀察可以發(fā)現(xiàn)此分式的分子和分母都沒有極限,像這種情況怎么辦呢?下面我們把它解出來。解答:注:通過此例題我們可以發(fā)現(xiàn):當(dāng)分式的分子和分母都沒有極限時就不能運用商的極限的運算規(guī)則了,應(yīng)先把分式的分子分母轉(zhuǎn)化為存在極限的情形,然后運用規(guī)則求之。函數(shù)極限的存在準(zhǔn)則學(xué)習(xí)函數(shù)極限的存在準(zhǔn)則之前,我們先來學(xué)習(xí)一下左

24、、右的概念。 我們先來看一個例子:例:符號函數(shù)為對于這個分段函數(shù),x從左趨于0和從右趨于0時函數(shù)極限是不相同的.為此我們定義了左、右極限的概念。定義:如果x僅從左側(cè)(xx0)趨近x0時,函數(shù)與常量A無限接近,則稱A為函數(shù)當(dāng)時的左極限.記:如果x僅從右側(cè)(xx0)趨近x0時,函數(shù)與常量A無限接近,則稱A為函數(shù)當(dāng)時的右極限.記:注:只有當(dāng)xx0時,函數(shù)的左、右極限存在且相等,方稱在xx0時有極限函數(shù)極限的存在準(zhǔn)則 準(zhǔn)則一:對于點x0的某一鄰域內(nèi)的一切x,x0點本身可以除外(或絕對值大于某一正數(shù)的一切x)有,且,那末存在,且等于A注:此準(zhǔn)則也就是夾逼準(zhǔn)則.準(zhǔn)則二:單調(diào)有界的函數(shù)必有極限.注:有極限的

25、函數(shù)不一定單調(diào)有界兩個重要的極限 一:注:其中e為無理數(shù),它的值為:e=2.718281828459045.二:注:在此我們對這兩個重要極限不加以證明.注:我們要牢記這兩個重要極限,在今后的解題中會經(jīng)常用到它們.例題:求解答:令,則x=-2t,因為x,故t,則注:解此類型的題時,一定要注意代換后的變量的趨向情況,象x時,若用t代換1/x,則t0.無窮大量和無窮小量無窮大量我們先來看一個例子:已知函數(shù),當(dāng)x0時,可知,我們把這種情況稱為趨向無窮大。為此我們可定義如下:設(shè)有函數(shù)y=,在x=x0的去心鄰域內(nèi)有定義,對于任意給定的正數(shù)N(一個任意大的數(shù)),總可找到正數(shù),當(dāng)時,成立,則稱函數(shù)當(dāng)時為無窮大

26、量。記為:(表示為無窮大量,實際它是沒有極限的)同樣我們可以給出當(dāng)x時,無限趨大的定義:設(shè)有函數(shù)y=,當(dāng)x充分大時有定義,對于任意給定的正數(shù)N(一個任意大的數(shù)),總可以找到正數(shù)M,當(dāng)時,成立,則稱函數(shù)當(dāng)x時是無窮大量,記為:無窮小量以零為極限的變量稱為無窮小量。定義:設(shè)有函數(shù),對于任意給定的正數(shù)(不論它多么小),總存在正數(shù)(或正數(shù)M),使得對于適合不等式(或)的一切x,所對應(yīng)的函數(shù)值滿足不等式,則稱函數(shù)當(dāng)(或x)時 為無窮小量.記作:(或)注意:無窮大量與無窮小量都是一個變化不定的量,不是常量,只有0可作為無窮小量的唯一常量。無窮大量與無窮小量的區(qū)別是:前者無界,后者有界,前者發(fā)散,后者收斂于

27、0.無窮大量與無窮小量是互為倒數(shù)關(guān)系的.關(guān)于無窮小量的兩個定理定理一:如果函數(shù)在(或x)時有極限A,則差是當(dāng)(或x)時的無窮小量,反之亦成立。定理二:無窮小量的有利運算定理a):有限個無窮小量的代數(shù)和仍是無窮小量; b):有限個無窮小量的積仍是無窮小量;c):常數(shù)與無窮小量的積也是無窮小量.無窮小量的比較通過前面的學(xué)習(xí)我們已經(jīng)知道,兩個無窮小量的和、差及乘積仍舊是無窮小.那么兩個無窮小量的商會是怎樣的呢?好!接下來我們就來解決這個問題,這就是我們要學(xué)的兩個無窮小量的比較。定義:設(shè),都是時的無窮小量,且在x0的去心領(lǐng)域內(nèi)不為零,a):如果,則稱是的高階無窮小或是的低階無窮小;b):如果,則稱和是

28、同階無窮小;c):如果,則稱和是等價無窮小,記作:(與等價)例:因為,所以當(dāng)x0時,x與3x是同階無窮?。灰驗?,所以當(dāng)x0時,x2是3x的高階無窮??;因為,所以當(dāng)x0時,sinx與x是等價無窮小。等價無窮小的性質(zhì)設(shè),且存在,則.注:這個性質(zhì)表明:求兩個無窮小之比的極限時,分子及分母都可用等價無窮小來代替,因此我們可以利用這個性質(zhì)來簡化求極限問題。例題:1.求 解答:當(dāng)x0時,sinaxax,tanbxbx,故:例題: 2.求解答:注:注:從這個例題中我們可以發(fā)現(xiàn),作無窮小變換時,要代換式中的某一項,不能只代換某個因子。函數(shù)的一重要性質(zhì)連續(xù)性在自然界中有許多現(xiàn)象,如氣溫的變化,植物的生長等都是連

29、續(xù)地變化著的.這種現(xiàn)象在函數(shù)關(guān)系上的反映,就是函數(shù)的連續(xù)性在定義函數(shù)的連續(xù)性之前我們先來學(xué)習(xí)一個概念增量設(shè)變量x從它的一個初值x1變到終值x2,終值與初值的差x2-x1就叫做變量x的增量,記為:x即:x=x2-x1 增量x可正可負.我們再來看一個例子:函數(shù)在點x0的鄰域內(nèi)有定義,當(dāng)自變量x在領(lǐng)域內(nèi)從x0變到x0+x時,函數(shù)y相應(yīng)地從變到,其對應(yīng)的增量為:這個關(guān)系式的幾何解釋如下圖:現(xiàn)在我們可對連續(xù)性的概念這樣描述:如果當(dāng)x趨向于零時,函數(shù)y對應(yīng)的增量y也趨向于零,即:,那末就稱函數(shù)在點x0處連續(xù)。函數(shù)連續(xù)性的定義:設(shè)函數(shù)在點x0的某個鄰域內(nèi)有定義,如果有稱函數(shù)在點x0處連續(xù),且稱x0為函數(shù)的的

30、連續(xù)點.下面我們結(jié)合著函數(shù)左、右極限的概念再來學(xué)習(xí)一下函數(shù)左、右連續(xù)的概念:設(shè)函數(shù)在區(qū)間(a,b內(nèi)有定義,如果左極限存在且等于,即:=,那末我們就稱函數(shù)在點b左連續(xù).設(shè)函數(shù)在區(qū)間a,b)內(nèi)有定義,如果右極限存在且等于,即:=,那末我們就稱函數(shù)在點a右連續(xù).一個函數(shù)在開區(qū)間(a,b)內(nèi)每點連續(xù),則為在(a,b)連續(xù),若又在a點右連續(xù),b點左連續(xù),則在閉區(qū)間a,b連續(xù),如果在整個定義域內(nèi)連續(xù),則稱為連續(xù)函數(shù)。注:一個函數(shù)若在定義域內(nèi)某一點左、右都連續(xù),則稱函數(shù)在此點連續(xù),否則在此點不連續(xù).注:連續(xù)函數(shù)圖形是一條連續(xù)而不間斷的曲線。通過上面的學(xué)習(xí)我們已經(jīng)知道函數(shù)的連續(xù)性了,同時我們可以想到若函數(shù)在某

31、一點要是不連續(xù)會出現(xiàn)什么情形呢?接著我們就來學(xué)習(xí)這個問題:函數(shù)的間斷點函數(shù)的間斷點定義:我們把不滿足函數(shù)連續(xù)性的點稱之為間斷點. 它包括三種情形:a):在x0無定義;b):在xx0時無極限;c):在xx0時有極限但不等于;下面我們通過例題來學(xué)習(xí)一下間斷點的類型:例1: 正切函數(shù)在處沒有定義,所以點是函數(shù)的間斷點,因,我們就稱為函數(shù)的無窮間斷點;例2:函數(shù)在點x=0處沒有定義;故當(dāng)x0時,函數(shù)值在-1與+1之間變動無限多次,我們就稱點x=0叫做函數(shù)的振蕩間斷點; 例3:函數(shù)當(dāng)x0時,左極限,右極限,從這我們可以看出函數(shù)左、右極限雖然都存在,但不相等,故函數(shù)在點x=0是不存在極限。我們還可以發(fā)現(xiàn)在

32、點x=0時,函數(shù)值產(chǎn)生跳躍現(xiàn)象,為此我們把這種間斷點稱為跳躍間斷點;我們把上述三種間斷點用幾何圖形表示出來如下:間斷點的分類我們通常把間斷點分成兩類:如果x0是函數(shù)的間斷點,且其左、右極限都存在,我們把x0稱為函數(shù)的第一類間斷點;不是第一類間斷點的任何間斷點,稱為第二類間斷點.可去間斷點若x0是函數(shù)的間斷點,但極限存在,那末x0是函數(shù)的第一類間斷點。此時函數(shù)不連續(xù)原因是:不存在或者是存在但。我們令,則可使函數(shù)在點x0處連續(xù),故這種間斷點x0稱為可去間斷點。連續(xù)函數(shù)的性質(zhì)及初等函數(shù)的連續(xù)性連續(xù)函數(shù)的性質(zhì)函數(shù)的和、積、商的連續(xù)性我們通過函數(shù)在某點連續(xù)的定義和極限的四則運算法則,可得出以下結(jié)論:a)

33、:有限個在某點連續(xù)的函數(shù)的和是一個在該點連續(xù)的函數(shù);b):有限個在某點連續(xù)的函數(shù)的乘積是一個在該點連續(xù)的函數(shù);c):兩個在某點連續(xù)的函數(shù)的商是一個在該點連續(xù)的函數(shù)(分母在該點不為零);反函數(shù)的連續(xù)性若函數(shù)在某區(qū)間上單調(diào)增(或單調(diào)減)且連續(xù),那末它的反函數(shù)也在對應(yīng)的區(qū)間上單調(diào)增(單調(diào)減)且連續(xù)例:函數(shù)在閉區(qū)間上單調(diào)增且連續(xù),故它的反函數(shù)在閉區(qū)間-1,1上也是單調(diào)增且連續(xù)的。復(fù)合函數(shù)的連續(xù)性設(shè)函數(shù)當(dāng)xx0時的極限存在且等于a,即:.而函數(shù)在點u=a連續(xù),那末復(fù)合函數(shù)當(dāng)xx0時的極限也存在且等于.即:例題:求解答:注:函數(shù)可看作與復(fù)合而成,且函數(shù)在點u=e連續(xù),因此可得出上述結(jié)論。設(shè)函數(shù)在點x=x0

34、連續(xù),且,而函數(shù)在點u=u0連續(xù),那末復(fù)合函數(shù)在點x=x0也是連續(xù)的初等函數(shù)的連續(xù)性通過前面我們所學(xué)的概念和性質(zhì),我們可得出以下結(jié)論:基本初等函數(shù)在它們的定義域內(nèi)都是連續(xù)的;一切初等函數(shù)在其定義域內(nèi)也都是連續(xù)的.閉區(qū)間上連續(xù)函數(shù)的性質(zhì)閉區(qū)間上的連續(xù)函數(shù)則是在其連續(xù)區(qū)間的左端點右連續(xù),右端點左連續(xù).對于閉區(qū)間上的連續(xù)函數(shù)有幾條重要的性質(zhì),下面我們來學(xué)習(xí)一下:最大值最小值定理:在閉區(qū)間上連續(xù)的函數(shù)一定有最大值和最小值。(在此不作證明) 例:函數(shù)y=sinx在閉區(qū)間0,2上連續(xù),則在點x=/2處,它的函數(shù)值為1,且大于閉區(qū)間0,2上其它各點出的函數(shù)值;則在點x=3/2處,它的函數(shù)值為-1,且小于閉區(qū)

35、間0,2上其它各點出的函數(shù)值。介值定理在閉區(qū)間上連續(xù)的函數(shù)一定取得介于區(qū)間兩端點的函數(shù)值間的任何值。即:,在、之間,則在a,b間一定有一個,使 推論:在閉區(qū)間連續(xù)的函數(shù)必取得介于最大值最小值之間的任何值。二、導(dǎo)數(shù)與微分導(dǎo)數(shù)的概念在學(xué)習(xí)到數(shù)的概念之前,我們先來討論一下物理學(xué)中變速直線運動的瞬時速度的問題。例:設(shè)一質(zhì)點沿x軸運動時,其位置x是時間t的函數(shù),求質(zhì)點在t0的瞬時速度?我們知道時間從t0有增量t時,質(zhì)點的位置有增量 ,這就是質(zhì)點在時間段t的位移。因此,在此段時間內(nèi)質(zhì)點的平均速度為:.若質(zhì)點是勻速運動的則這就是在t0的瞬時速度,若質(zhì)點是非勻速直線運動,則這還不是質(zhì)點在t0時的瞬時速度。我們

36、認為當(dāng)時間段t無限地接近于0時,此平均速度會無限地接近于質(zhì)點t0時的瞬時速度,即:質(zhì)點在t0時的瞬時速度=為此就產(chǎn)生了導(dǎo)數(shù)的定義,如下:導(dǎo)數(shù)的定義:設(shè)函數(shù)在點x0的某一鄰域內(nèi)有定義,當(dāng)自變量x在x0處有增量x(x+x也在該鄰域內(nèi))時,相應(yīng)地函數(shù)有增量,若y與x之比當(dāng)x0時極限存在,則稱這個極限值為在x0處的導(dǎo)數(shù)。記為:還可記為:,函數(shù)在點x0處存在導(dǎo)數(shù)簡稱函數(shù)在點x0處可導(dǎo),否則不可導(dǎo)。若函數(shù)在區(qū)間(a,b)內(nèi)每一點都可導(dǎo),就稱函數(shù)在區(qū)間(a,b)內(nèi)可導(dǎo)。這時函數(shù)對于區(qū)間(a,b)內(nèi)的每一個確定的x值,都對應(yīng)著一個確定的導(dǎo)數(shù),這就構(gòu)成一個新的函數(shù),我們就稱這個函數(shù)為原來函數(shù)的導(dǎo)函數(shù)。 注:導(dǎo)數(shù)

37、也就是差商的極限左、右導(dǎo)數(shù)前面我們有了左、右極限的概念,導(dǎo)數(shù)是差商的極限,因此我們可以給出左、右導(dǎo)數(shù)的概念。若極限存在,我們就稱它為函數(shù)在x=x0處的左導(dǎo)數(shù)。若極限存在,我們就稱它為函數(shù)在x=x0處的右導(dǎo)數(shù)。注:函數(shù)在x0處的左右導(dǎo)數(shù)存在且相等是函數(shù)在x0處的可導(dǎo)的充分必要條件函數(shù)的和、差求導(dǎo)法則函數(shù)的和差求導(dǎo)法則 法則:兩個可導(dǎo)函數(shù)的和(差)的導(dǎo)數(shù)等于這兩個函數(shù)的導(dǎo)數(shù)的和(差).用公式可寫為:。其中u、v為可導(dǎo)函數(shù)。例題:已知,求解答:例題:已知,求解答:函數(shù)的積商求導(dǎo)法則常數(shù)與函數(shù)的積的求導(dǎo)法則法則:在求一個常數(shù)與一個可導(dǎo)函數(shù)的乘積的導(dǎo)數(shù)時,常數(shù)因子可以提到求導(dǎo)記號外面去。用公式可寫成:

38、例題:已知,求解答:函數(shù)的積的求導(dǎo)法則法則:兩個可導(dǎo)函數(shù)乘積的導(dǎo)數(shù)等于第一個因子的導(dǎo)數(shù)乘第二個因子,加上第一個因子乘第二個因子的導(dǎo)數(shù)。用公式可寫成:例題:已知,求解答:注:若是三個函數(shù)相乘,則先把其中的兩個看成一項。函數(shù)的商的求導(dǎo)法則法則:兩個可導(dǎo)函數(shù)之商的導(dǎo)數(shù)等于分子的導(dǎo)數(shù)與分母導(dǎo)數(shù)乘積減去分母導(dǎo)數(shù)與分子導(dǎo)數(shù)的乘積,在除以分母導(dǎo)數(shù)的平方。用公式可寫成: 例題:已知,求解答:復(fù)合函數(shù)的求導(dǎo)法則在學(xué)習(xí)此法則之前我們先來看一個例子!例題:求=?解答:由于,故 這個解答正確嗎?這個解答是錯誤的,正確的解答應(yīng)該如下:我們發(fā)生錯誤的原因是是對自變量x求導(dǎo),而不是對2x求導(dǎo)。下面我們給出復(fù)合函數(shù)的求導(dǎo)法則

39、復(fù)合函數(shù)的求導(dǎo)規(guī)則規(guī)則:兩個可導(dǎo)函數(shù)復(fù)合而成的復(fù)合函數(shù)的導(dǎo)數(shù)等于函數(shù)對中間變量的導(dǎo)數(shù)乘上中間變量對自變量的導(dǎo)數(shù)。用公式表示為:,其中u為中間變量例題:已知,求解答:設(shè),則可分解為,因此注:在以后解題中,我們可以中間步驟省去。例題:已知,求 解答:反函數(shù)求導(dǎo)法則根據(jù)反函數(shù)的定義,函數(shù)為單調(diào)連續(xù)函數(shù),則它的反函數(shù),它也是單調(diào)連續(xù)的.為此我們可給出反函數(shù)的求導(dǎo)法則,如下(我們以定理的形式給出):定理:若是單調(diào)連續(xù)的,且,則它的反函數(shù)在點x可導(dǎo),且有: 注:通過此定理我們可以發(fā)現(xiàn):反函數(shù)的導(dǎo)數(shù)等于原函數(shù)導(dǎo)數(shù)的倒數(shù)。注:這里的反函數(shù)是以y為自變量的,我們沒有對它作記號變換。即: 是對y求導(dǎo),是對x求導(dǎo)例

40、題:求的導(dǎo)數(shù).解答:此函數(shù)的反函數(shù)為,故則:例題:求的導(dǎo)數(shù).解答:此函數(shù)的反函數(shù)為,故則:高階導(dǎo)數(shù)我們知道,在物理學(xué)上變速直線運動的速度v(t)是位置函數(shù)s(t)對時間t的導(dǎo)數(shù),即: ,而加速度a又是速度v對時間t的變化率,即速度v對時間t的導(dǎo)數(shù): ,或。這種導(dǎo)數(shù)的導(dǎo)數(shù)叫做s對t的二階導(dǎo)數(shù)。下面我們給出它的數(shù)學(xué)定義:定義:函數(shù)的導(dǎo)數(shù)仍然是x的函數(shù).我們把的導(dǎo)數(shù)叫做函數(shù)的二階導(dǎo)數(shù),記作或,即:或.相應(yīng)地,把的導(dǎo)數(shù)叫做函數(shù)的一階導(dǎo)數(shù).類似地,二階導(dǎo)數(shù)的導(dǎo)數(shù),叫做三階導(dǎo)數(shù),三階導(dǎo)數(shù)的導(dǎo)數(shù),叫做四階導(dǎo)數(shù),一般地(n-1)階導(dǎo)數(shù)的導(dǎo)數(shù)叫做n階導(dǎo)數(shù).分別記作:,或,二階及二階以上的導(dǎo)數(shù)統(tǒng)稱高階導(dǎo)數(shù)。由此可

41、見,求高階導(dǎo)數(shù)就是多次接連地求導(dǎo),所以,在求高階導(dǎo)數(shù)時可運用前面所學(xué)的求導(dǎo)方法。例題:已知,求 解答:因為=a,故=0例題:求對數(shù)函數(shù)的n階導(dǎo)數(shù)。解答:,一般地,可得隱函數(shù)及其求導(dǎo)法則我們知道用解析法表示函數(shù),可以有不同的形式.若函數(shù)y可以用含自變量x的算式表示,像y=sinx,y=1+3x等,這樣的函數(shù)叫顯函數(shù).前面我們所遇到的函數(shù)大多都是顯函數(shù).一般地,如果方程F(x,y)=0中,令x在某一區(qū)間內(nèi)任取一值時,相應(yīng)地總有滿足此方程的y值存在,則我們就說方程F(x,y)=0在該區(qū)間上確定了x的隱函數(shù)y.把一個隱函數(shù)化成顯函數(shù)的形式,叫做隱函數(shù)的顯化。注:有些隱函數(shù)并不是很容易化為顯函數(shù)的,那么

42、在求其導(dǎo)數(shù)時該如何呢?下面讓我們來解決這個問題!隱函數(shù)的求導(dǎo)若已知F(x,y)=0,求時,一般按下列步驟進行求解:a):若方程F(x,y)=0,能化為的形式,則用前面我們所學(xué)的方法進行求導(dǎo);b):若方程F(x,y)=0,不能化為的形式,則是方程兩邊對x進行求導(dǎo),并把y看成x的函數(shù),用復(fù)合函數(shù)求導(dǎo)法則進行。例題:已知,求解答:此方程不易顯化,故運用隱函數(shù)求導(dǎo)法.兩邊對x進行求導(dǎo), ,故= 注:我們對隱函數(shù)兩邊對x進行求導(dǎo)時,一定要把變量y看成x的函數(shù),然后對其利用復(fù)合函數(shù)求導(dǎo)法則進行求導(dǎo)。例題:求隱函數(shù),在x=0處的導(dǎo)數(shù)解答:兩邊對x求導(dǎo),故,當(dāng)x=0時,y=0.故。有些函數(shù)在求導(dǎo)數(shù)時,若對其直

43、接求導(dǎo)有時很不方便,像對某些冪函數(shù)進行求導(dǎo)時,有沒有一種比較直觀的方法呢?下面我們再來學(xué)習(xí)一種求導(dǎo)的方法:對數(shù)求導(dǎo)法對數(shù)求導(dǎo)法對數(shù)求導(dǎo)的法則:根據(jù)隱函數(shù)求導(dǎo)的方法,對某一函數(shù)先取函數(shù)的自然對數(shù),然后在求導(dǎo)。注:此方法特別適用于冪函數(shù)的求導(dǎo)問題。例題:已知x0,求此題若對其直接求導(dǎo)比較麻煩,我們可以先對其兩邊取自然對數(shù),然后再把它看成隱函數(shù)進行求導(dǎo),就比較簡便些。如下解答:先兩邊取對數(shù): ,把其看成隱函數(shù),再兩邊求導(dǎo)因為,所以例題:已知,求此題可用復(fù)合函數(shù)求導(dǎo)法則進行求導(dǎo),但是比較麻煩,下面我們利用對數(shù)求導(dǎo)法進行求導(dǎo)解答:先兩邊取對數(shù)再兩邊求導(dǎo)因為,所以函數(shù)的微分學(xué)習(xí)函數(shù)的微分之前,我們先來分析

44、一個具體問題:一塊正方形金屬薄片受溫度變化的影響時,其邊長由x0變到了x0+x,則此薄片的面積改變了多少?解答:設(shè)此薄片的邊長為x,面積為A,則A是x的函數(shù): 薄片受溫度變化的影響面積的改變量,可以看成是當(dāng)自變量x從x0取的增量x時,函數(shù)A相應(yīng)的增量A,即:。從上式我們可以看出,A分成兩部分,第一部分是x的線性函數(shù),即下圖中紅色部分;第二部分即圖中的黑色部分,當(dāng)x0時,它是x的高階無窮小,表示為:由此我們可以發(fā)現(xiàn),如果邊長變化的很小時,面積的改變量可以近似的用地一部分來代替。下面我們給出微分的數(shù)學(xué)定義:函數(shù)微分的定義:設(shè)函數(shù)在某區(qū)間內(nèi)有定義,x0及x0+x在這區(qū)間內(nèi),若函數(shù)的增量可表示為,其中

45、A是不依賴于x的常數(shù),是x的高階無窮小,則稱函數(shù)在點x0可微的。叫做函數(shù)在點x0相應(yīng)于自變量增量x的微分,記作dy,即:=。通過上面的學(xué)習(xí)我們知道:微分是自變量改變量x的線性函數(shù),dy與y的差是關(guān)于x的高階無窮小量,我們把dy稱作y的線性主部。于是我們又得出:當(dāng)x0時,ydy.導(dǎo)數(shù)的記號為: ,現(xiàn)在我們可以發(fā)現(xiàn),它不僅表示導(dǎo)數(shù)的記號,而且還可以表示兩個微分的比值(把x看成dx,即:定義自變量的增量等于自變量的微分),還可表示為:由此我們得出:若函數(shù)在某區(qū)間上可導(dǎo),則它在此區(qū)間上一定可微,反之亦成立。微分形式不變性 什么是微分形式不邊形呢? 設(shè),則復(fù)合函數(shù)的微分為: , 由于,故我們可以把復(fù)合函

46、數(shù)的微分寫成 由此可見,不論u是自變量還是中間變量,的微分dy總可以用與du的乘積來表示, 我們把這一性質(zhì)稱為微分形式不變性。 例題:已知,求dy 解答:把2x+1看成中間變量u,根據(jù)微分形式不變性,則 通過上面的學(xué)習(xí),我們知道微分與導(dǎo)數(shù)有著不可分割的聯(lián)系,前面我們知道基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù) 的運算法則,那么基本初等函數(shù)的微分公式和微分運算法則是怎樣的呢? 下面我們來學(xué)習(xí)基本初等函數(shù)的微分公式與微分的運算法則基本初等函數(shù)的微分公式與微分的運算法則 基本初等函數(shù)的微分公式 由于函數(shù)微分的表達式為:,于是我們通過基本初等函數(shù)導(dǎo)數(shù)的公式可得出基本初等函數(shù)微分的公式,下面我們用表格來把基本初等函

47、數(shù)的導(dǎo)數(shù)公式與微分公式對比一下:(部分公式)導(dǎo)數(shù)公式微分公式微分運算法則 由函數(shù)和、差、積、商的求導(dǎo)法則,可推出相應(yīng)的微分法則.為了便于理解,下面我們用表格來把微分的運算法則與導(dǎo)數(shù)的運算法則對照一下:函數(shù)和、差、積、商的求導(dǎo)法則函數(shù)和、差、積、商的微分法則 復(fù)合函數(shù)的微分法則就是前面我們學(xué)到的微分形式不變性,在此不再詳述。 例題:設(shè),求對x3的導(dǎo)數(shù) 解答:根據(jù)微分形式的不變性 微分的應(yīng)用 微分是表示函數(shù)增量的線性主部.計算函數(shù)的增量,有時比較困難,但計算微分則比較簡單,為此我們用函數(shù)的微分來近似的代替函數(shù)的增量,這就是微分在近似計算中的應(yīng)用. 例題:求的近似值。 解答:我們發(fā)現(xiàn)用計算的方法特別

48、麻煩,為此把轉(zhuǎn)化為求微分的問題 故其近似值為1.025(精確值為1.024695)三、導(dǎo)數(shù)的應(yīng)用微分學(xué)中值定理 在給出微分學(xué)中值定理的數(shù)學(xué)定義之前,我們先從幾何的角度看一個問題,如下: 設(shè)有連續(xù)函數(shù),a與b是它定義區(qū)間內(nèi)的兩點(ab),假定此函數(shù)在(a,b)處處可導(dǎo),也就是在(a,b)內(nèi)的函數(shù)圖形上處處都由切線,那末我們從圖形上容易直到, 差商就是割線AB的斜率,若我們把割線AB作平行于自身的移動,那么至少有一次機會達到離割線最遠的一點P(x=c)處成為曲線的切線,而曲線的斜率為,由于切線與割線是平行的,因此 成立。 注:這個結(jié)果就稱為微分學(xué)中值定理,也稱為拉格朗日中值定理拉格朗日中值定理 如

49、果函數(shù)在閉區(qū)間a,b上連續(xù),在開區(qū)間(a,b)內(nèi)可導(dǎo),那末在(a,b)內(nèi)至少有一點c,使 成立。 這個定理的特殊情形,即:的情形,稱為羅爾定理。描述如下: 若在閉區(qū)間a,b上連續(xù),在開區(qū)間(a,b)內(nèi)可導(dǎo),且,那末在(a,b)內(nèi)至少有一點c,使成立。 注:這個定理是羅爾在17世紀(jì)初,在微積分發(fā)明之前以幾何的形式提出來的。 注:在此我們對這兩個定理不加以證明,若有什么疑問,請參考相關(guān)書籍 下面我們在學(xué)習(xí)一條通過拉格朗日中值定理推廣得來的定理柯西中值定理柯西中值定理 如果函數(shù),在閉區(qū)間a,b上連續(xù),在開區(qū)間(a,b)內(nèi)可導(dǎo),且0,那末在(a,b)內(nèi)至少有一點c,使成立。 例題:證明方程在0與1之間

50、至少有一個實根 證明:不難發(fā)現(xiàn)方程左端是函數(shù)的導(dǎo)數(shù): 函數(shù)在0,1上連續(xù),在(0,1)內(nèi)可導(dǎo),且,由羅爾定理 可知,在0與1之間至少有一點c,使,即 也就是:方程在0與1之間至少有一個實根未定式問題 問題:什么樣的式子稱作未定式呢? 答案:對于函數(shù),來說,當(dāng)xa(或x)時,函數(shù),都趨于零或無窮大 則極限可能存在,也可能不存在,我們就把式子稱為未定式。分別記為型 我們?nèi)菀字?,對于未定式的極限求法,是不能應(yīng)用商的極限等于極限的商這個法則來求解的,那么我們該如何求這類問題的極限呢? 下面我們來學(xué)習(xí)羅彼塔(LHospital)法則,它就是這個問題的答案 注:它是根據(jù)柯西中值定理推出來的。羅彼塔(LH

51、ospital)法則 當(dāng)xa(或x)時,函數(shù),都趨于零或無窮大,在點a的某個去心鄰域內(nèi)(或當(dāng)xN)時,與都存在,0,且存在 則:= 這種通過分子分母求導(dǎo)再來求極限來確定未定式的方法,就是所謂的羅彼塔(LHospital)法則 注:它是以前求極限的法則的補充,以前利用法則不好求的極限,可利用此法則求解。 例題:求 解答:容易看出此題利用以前所學(xué)的法則是不易求解的,因為它是未定式中的型求解問題,因此我們就可以利用上面所學(xué)的法則了。 例題:求 解答:此題為未定式中的型求解問題,利用羅彼塔法則來求解 另外,若遇到 、 、 、 等型,通常是轉(zhuǎn)化為型后,在利用法則求解。 例題:求 解答:此題利用以前所學(xué)的

52、法則是不好求解的,它為型,故可先將其轉(zhuǎn)化為型后在求解, 注:羅彼塔法則只是說明:對未定式來說,當(dāng)存在,則存在且二者的極限相同;而并不是不存在時,也不存在,此時只是說明了羅彼塔法則存在的條件破列。函數(shù)單調(diào)性的判定法 函數(shù)的單調(diào)性也就是函數(shù)的增減性,怎樣才能判斷函數(shù)的增減性呢? 我們知道若函數(shù)在某區(qū)間上單調(diào)增(或減),則在此區(qū)間內(nèi)函數(shù)圖形上切線的斜率均為正(或負),也就是函數(shù)的導(dǎo)數(shù)在此區(qū)間上均取正值(或負值).因此我們可通過判定函數(shù)導(dǎo)數(shù)的正負來判定函數(shù)的增減性.判定方法: 設(shè)函數(shù)在a,b上連續(xù),在(a,b)內(nèi)可導(dǎo). a):如果在(a,b)內(nèi)0,那末函數(shù)在a,b上單調(diào)增加; b):如果在(a,b)內(nèi)0,那末函數(shù)在a,b上單調(diào)減少

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論