高中數(shù)學重點知識與結論分類解析_第1頁
高中數(shù)學重點知識與結論分類解析_第2頁
高中數(shù)學重點知識與結論分類解析_第3頁
高中數(shù)學重點知識與結論分類解析_第4頁
高中數(shù)學重點知識與結論分類解析_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、高中數(shù)學重點知識與結論分類解析 一、集合與簡易邏輯 1集合的元素具有確定性、無序性和互異性 2對集合 , 時,必須注意到“極端”情況: 或 ;求集合的子集時是否注意到 是任何集合的子集、 是任何非空集合的真子集 3對于含有 個元素的有限集合 ,其子集、真子集、非空子集、非空真子集的個數(shù)依次為 4“交的補等于補的并,即 ”;“并的補等于補的交,即 ” 5判斷命題的真假 關鍵是“抓住關聯(lián)字詞”;注意:“不或即且,不且即或” 6“或命題”的真假特點是“一真即真,要假全假”;“且命題”的真假特點是“一假即假,要真全真”;“非命題”的真假特點是“一真一假” 7四種命題中“逆者交換也”、“否者否定也” 原

2、命題等價于逆否命題,但原命題與逆命題、否命題都不等價反證法分為三步:假設、推矛、得果 注意:命題的否定是“命題的非命題,也就是條件不變,僅否定結論所得命題”,但否命題是“既否定原命題的條件作為條件,又否定原命題的結論作為結論的所得命題” L 8充要條件 二、函 數(shù) 1指數(shù)式、對數(shù)式, 2(1)映射是“全部射出加一箭一雕”;映射中第一個集合 中的元素必有像,但第二個集合 中的元素不一定有原像( 中元素的像有且僅有下一個,但 中元素的原像可能沒有,也可任意個);函數(shù)是“非空數(shù)集上的映射”,其中“值域是映射中像集 的子集” (2)函數(shù)圖像與 軸垂線至多一個公共點,但與 軸垂線的公共點可能沒有,也可任

3、意個 (3)函數(shù)圖像一定是坐標系中的曲線,但坐標系中的曲線不一定能成為函數(shù)圖像 3單調(diào)性和奇偶性 (1)奇函數(shù)在關于原點對稱的區(qū)間上若有單調(diào)性,則其單調(diào)性完全相同 偶函數(shù)在關于原點對稱的區(qū)間上若有單調(diào)性,則其單調(diào)性恰恰相反 注意:(1)確定函數(shù)的奇偶性,務必先判定函數(shù)定義域是否關于原點對稱確定函數(shù)奇偶性的常用方法有:定義法、圖像法等等對于偶函數(shù)而言有: (2)若奇函數(shù)定義域中有0,則必有 即 的定義域時, 是 為奇函數(shù)的必要非充分條件 (3)確定函數(shù)的單調(diào)性或單調(diào)區(qū)間,在解答題中常用:定義法(取值、作差、鑒定)、導數(shù)法;在選擇、填空題中還有:數(shù)形結合法(圖像法)、特殊值法等等 (4)既奇又偶函

4、數(shù)有無窮多個( ,定義域是關于原點對稱的任意一個數(shù)集) (7)復合函數(shù)的單調(diào)性特點是:“同性得增,增必同性;異性得減,減必異性” 復合函數(shù)的奇偶性特點是:“內(nèi)偶則偶,內(nèi)奇同外”復合函數(shù)要考慮定義域的變化。(即復合有意義) 4對稱性與周期性(以下結論要消化吸收,不可強記) (1)函數(shù) 與函數(shù) 的圖像關于直線 ( 軸)對稱 推廣一:如果函數(shù) 對于一切 ,都有 成立,那么 的圖像關于直線 (由“ 和的一半 確定”)對稱 推廣二:函數(shù) , 的圖像關于直線 (由 確定)對稱 (2)函數(shù) 與函數(shù) 的圖像關于直線 ( 軸)對稱 (3)函數(shù) 與函數(shù) 的圖像關于坐標原點中心對稱 推廣:曲線 關于直線 的對稱曲線

5、是 ; 曲線 關于直線 的對稱曲線是 (5)類比“三角函數(shù)圖像”得:若 圖像有兩條對稱軸 ,則 必是周期函數(shù),且一周期為 如果 是R上的周期函數(shù),且一個周期為 ,那么 特別:若 恒成立,則 若 恒成立,則 若 恒成立,則 三、數(shù) 列 1數(shù)列的通項、數(shù)列項的項數(shù),遞推公式與遞推數(shù)列,數(shù)列的通項與數(shù)列的前 項和公式的關系: (必要時請分類討論) 注意: ; 2等差數(shù)列 中: (1)等差數(shù)列公差的取值與等差數(shù)列的單調(diào)性 (2) ; (3) 、 也成等差數(shù)列 (4)兩等差數(shù)列對應項和(差)組成的新數(shù)列仍成等差數(shù)列 (5) 仍成等差數(shù)列 (8)“首正”的遞等差數(shù)列中,前 項和的最大值是所有非負項之和;

6、“首負”的遞增等差數(shù)列中,前 項和的最小值是所有非正項之和; (9)有限等差數(shù)列中,奇數(shù)項和與偶數(shù)項和的存在必然聯(lián)系,由數(shù)列的總項數(shù)是偶數(shù)還是奇數(shù)決定若總項數(shù)為偶數(shù),則“偶數(shù)項和”“奇數(shù)項和”總項數(shù)的一半與其公差的積;若總項數(shù)為奇數(shù),則“奇數(shù)項和”“偶數(shù)項和”此數(shù)列的中項 (10)兩數(shù)的等差中項惟一存在在遇到三數(shù)或四數(shù)成等差數(shù)列時,??紤]選用“中項關系”轉化求解 (11)判定數(shù)列是否是等差數(shù)列的主要方法有:定義法、中項法、通項法、和式法、圖像法(也就是說數(shù)列是等差數(shù)列的充要條件主要有這五種形式) 3等比數(shù)列 中: (1)等比數(shù)列的符號特征(全正或全負或一正一負),等比數(shù)列的首項、公比與等比數(shù)列

7、的單調(diào)性 (3) 、 、 成等比數(shù)列; 成等比數(shù)列 成等比數(shù)列 (4)兩等比數(shù)列對應項積(商)組成的新數(shù)列仍成等比數(shù)列 (8)“首大于1”的正值遞減等比數(shù)列中,前 項積的最大值是所有大于或等于1的項的積;“首小于1”的正值遞增等比數(shù)列中,前 項積的最小值是所有小于或等于1的項的積; (9)有限等比數(shù)列中,奇數(shù)項和與偶數(shù)項和的存在必然聯(lián)系,由數(shù)列的總項數(shù)是偶數(shù)還是奇數(shù)決定若總項數(shù)為偶數(shù),則“偶數(shù)項和”“奇數(shù)項和”與“公比”的積;若總項數(shù)為奇數(shù),則“奇數(shù)項和”“首項”加上“公比”與“偶數(shù)項和”積的和 (10)并非任何兩數(shù)總有等比中項僅當實數(shù) 同號時,實數(shù) 存在等比中項對同號兩實數(shù) 的等比中項不僅存

8、在,而且有一對 也就是說,兩實數(shù)要么沒有等比中項(非同號時),如果有,必有一對(同號時)在遇到三數(shù)或四數(shù)成等差數(shù)列時,常優(yōu)先考慮選用“中項關系”轉化求解 (11)判定數(shù)列是否是等比數(shù)列的方法主要有:定義法、中項法、通項法、和式法(也就是說數(shù)列是等比數(shù)列的充要條件主要有這四種形式) 4等差數(shù)列與等比數(shù)列的聯(lián)系 (1)如果數(shù)列 成等差數(shù)列,那么數(shù)列 ( 總有意義)必成等比數(shù)列 (2)如果數(shù)列 成等比數(shù)列,那么數(shù)列 必成等差數(shù)列 (3)如果數(shù)列 既成等差數(shù)列又成等比數(shù)列,那么數(shù)列 是非零常數(shù)數(shù)列;但數(shù)列 是常數(shù)數(shù)列僅是數(shù)列既成等差數(shù)列又成等比數(shù)列的必要非充分條件 (4)如果兩等差數(shù)列有公共項,那么由

9、他們的公共項順次組成的新數(shù)列也是等差數(shù)列,且新等差數(shù)列的公差是原兩等差數(shù)列公差的最小公倍數(shù) 如果一個等差數(shù)列與一個等比數(shù)列有公共項順次組成新數(shù)列,那么常選用“由特殊到一般的方法”進行研討,且以其等比數(shù)列的項為主,探求等比數(shù)列中那些項是他們的公共項,并構成新的數(shù)列 注意:(1)公共項僅是公共的項,其項數(shù)不一定相同,即研究 但也有少數(shù)問題中研究 ,這時既要求項相同,也要求項數(shù)相同(2)三(四)個數(shù)成等差(比)的中項轉化和通項轉化法 5數(shù)列求和的常用方法: (1)公式法:等差數(shù)列求和公式(三種形式), 等比數(shù)列求和公式(三種形式), (2)分組求和法:在直接運用公式法求和有困難時,常將“和式”中“同

10、類項”先合并在一起,再運用公式法求和 (3)倒序相加法:在數(shù)列求和中,若和式中到首尾距離相等的兩項和有其共性或數(shù)列的通項與組合數(shù)相關聯(lián),則??煽紤]選用倒序相加法,發(fā)揮其共性的作用求和(這也是等差數(shù)列前 和公式的推導方法) (4)錯位相減法:如果數(shù)列的通項是由一個等差數(shù)列的通項與一個等比數(shù)列的通項相乘構成,那么常選用錯位相減法,將其和轉化為“一個新的的等比數(shù)列的和”求解(注意:一般錯位相減后,其中“新等比數(shù)列的項數(shù)是原數(shù)列的項數(shù)減一的差”?。ㄟ@也是等比數(shù)列前 和公式的推導方法之一) (5)裂項相消法:如果數(shù)列的通項可“分裂成兩項差”的形式,且相鄰項分裂后相關聯(lián),那么常選用裂項相消法求和常用裂項

11、形式有: 特別聲明:L運用等比數(shù)列求和公式,務必檢查其公比與1的關系,必要時分類討論 (6)通項轉換法。 四、三角函數(shù) 1 終邊與 終邊相同( 的終邊在 終邊所在射線上) 終邊與 終邊共線( 的終邊在 終邊所在直線上) 終邊與 終邊關于 軸對稱 終邊與 終邊關于 軸對稱 終邊與 終邊關于原點對稱 一般地: 終邊與 終邊關于角 的終邊對稱 與 的終邊關系由“兩等分各象限、一二三四”確定 2弧長公式: ,扇形面積公式: ,1弧度(1rad) 3三角函數(shù)符號特征是:一是全正、二正弦正、三是切正、四余弦正 注意: , 4三角函數(shù)線的特征是:正弦線“站在 軸上(起點在 軸上)”、余弦線“躺在 軸上(起點

12、是原點)”、正切線“站在點 處(起點是 )”務必重視“三角函數(shù)值的大小與單位圓上相應點的坐標之間的關系,正弦 縱坐標、余弦 橫坐標、正切 縱坐標除以橫坐標之商”;務必記?。簡挝粓A中角終邊的變化與 值的大小變化的關系 為銳角 5三角函數(shù)同角關系中,平方關系的運用中,務必重視“根據(jù)已知角的范圍和三角函數(shù)的取值,精確確定角的范圍,并進行定號”; 6三角函數(shù)誘導公式的本質(zhì)是:奇變偶不變,符號看象限 7三角函數(shù)變換主要是:角、函數(shù)名、次數(shù)、系數(shù)(常值)的變換,其核心是“角的變換”! 角的變換主要有:已知角與特殊角的變換、已知角與目標角的變換、角與其倍角的變換、兩角與其和差角的變換 常值變換主要指“1”的

13、變換: 等 三角式變換主要有:三角函數(shù)名互化(切割化弦)、三角函數(shù)次數(shù)的降升(降次、升次)、運算結構的轉化(和式與積式的互化)解題時本著“三看”的基本原則來進行:“看角、看函數(shù)、看特征”,基本的技巧有:巧變角,公式變形使用,化切割為弦,用倍角公式將高次降次 注意:和(差)角的函數(shù)結構與符號特征;余弦倍角公式的三種形式選用;降次(升次)公式中的符號特征“正余弦三兄妹 的聯(lián)系”(常和三角換元法聯(lián)系在一起 ) 輔助角公式中輔助角的確定: (其中 角所在的象限由a, b的符號確定, 角的值由 確定)在求最值、化簡時起著重要作用尤其是兩者系數(shù)絕對值之比為 的情形 有實數(shù)解 8三角函數(shù)性質(zhì)、圖像及其變換:

14、 (1)三角函數(shù)的定義域、值域、單調(diào)性、奇偶性、有界性和周期性 注意:正切函數(shù)、余切函數(shù)的定義域;絕對值對三角函數(shù)周期性的影響:一般說來,某一周期函數(shù)解析式加絕對值或平方,其周期性是:弦減半、切不變既為周期函數(shù)又是偶函數(shù)的函數(shù)自變量加絕對值,其周期性不變;其他不定如 的周期都是 , 但 的周期為 , y=|tanx|的周期不變,問函數(shù)y=cos|x|, ,y=cos|x|是周期函數(shù)嗎? (2)三角函數(shù)圖像及其幾何性質(zhì): (3)三角函數(shù)圖像的變換:兩軸方向的平移、伸縮及其向量的平移變換 (4)三角函數(shù)圖像的作法:三角函數(shù)線法、五點法(五點橫坐標成等差數(shù)列)和變換法 9三角形中的三角函數(shù): (1)

15、內(nèi)角和定理:三角形三角和為 ,任意兩角和與第三個角總互補,任意兩半角和與第三個角的半角總互余銳角三角形 三內(nèi)角都是銳角 三內(nèi)角的余弦值為正值 任兩角和都是鈍角 任意兩邊的平方和大于第三邊的平方 (2)正弦定理: (R為三角形外接圓的半徑) 注意:已知三角形兩邊一對角,求解三角形時,若運用正弦定理,則務必注意可能有兩解 (3)余弦定理: 等,常選用余弦定理鑒定三角形的類型 (4)面積公式: 五、向 量 1向量運算的幾何形式和坐標形式,請注意:向量運算中向量起點、終點及其坐標的特征 2幾個概念:零向量、單位向量(與 共線的單位向量是 ,特別: )、平行(共線)向量(無傳遞性,是因為有 )、相等向量

16、(有傳遞性)、相反向量、向量垂直、以及一個向量在另一向量方向上的投影( 在 上的投影是 ) 3兩非零向量平行(共線)的充要條件 兩個非零向量垂直的充要條件 特別:零向量和任何向量共線 是向量平行的充分不必要條件! 4平面向量的基本定理:如果e1和e2是同一平面內(nèi)的兩個不共線向量,那么對該平面內(nèi)的任一向量a,有且只有一對實數(shù) 、 ,使a= e1 e2 5三點 共線 共線; 向量 中三終點 共線 存在實數(shù) 使得: 且 6向量的數(shù)量積: , , , 注意: 為銳角 且 不同向; 為直角 且 ; 為鈍角 且 不反向; 是 為鈍角的必要非充分條件 向量運算和實數(shù)運算有類似的地方也有區(qū)別:一個封閉圖形首尾

17、連接而成的向量和為零向量,這是題目中的天然條件,要注意運用;對于一個向量等式,可以移項,兩邊平方、兩邊同乘以一個實數(shù),兩邊同時取模,兩邊同乘以一個向量,但不能兩邊同除以一個向量,即兩邊不能約去一個向量;向量的“乘法”不滿足結合律,即 ,切記兩向量不能相除(相約) 7 注意: 同向或有 ; 反向或有 ; 不共線 (這些和實數(shù)集中類似) 8.中點坐標公式 , 為 的中點 中, 過 邊中點; ; 為 的重心; 特別 為 的重心 為 的垂心; 所在直線過 的內(nèi)心(是 的角平分線所在直線); 的內(nèi)心 六、不等式 1(1)解不等式是求不等式的解集,最后務必有集合的形式表示;不等式解集的端點值往往是不等式對

18、應方程的根或不等式有意義范圍的端點值 (2)解分式不等式 的一般解題思路是什么?(移項通分,分子分母分解因式,x的系數(shù)變?yōu)檎?,標根及奇穿過偶彈回); (3)含有兩個絕對值的不等式如何去絕對值?(一般是根據(jù)定義分類討論、平方轉化或換元轉化); (4)解含參不等式常分類等價轉化,必要時需分類討論注意:按參數(shù)討論,最后按參數(shù)取值分別說明其解集,但若按未知數(shù)討論,最后應求并集 2利用重要不等式 以及變式 等求函數(shù)的最值時,務必注意a,b (或a ,b非負),且“等號成立”時的條件是積ab或和ab其中之一應是定值(一正二定三等四同時) 3常用不等式有: (根據(jù)目標不等式左右的運算結構選用) a、b、c

19、 R, (當且僅當 時,取等號) 4比較大小的方法和證明不等式的方法主要有:差比較法、商比較法、函數(shù)性質(zhì)法、綜合法、分析法 5含絕對值不等式的性質(zhì): 同號或有 ; 異號或有 注意:不等式恒成立問題的常規(guī)處理方式?(常應用方程函數(shù)思想和“分離變量法”轉化為最值問題) 6不等式的恒成立,能成立,恰成立等問題 (1)恒成立問題 若不等式 在區(qū)間 上恒成立,則等價于在區(qū)間 上 若不等式 在區(qū)間 上恒成立,則等價于在區(qū)間 上 (2)能成立問題 若在區(qū)間 上存在實數(shù) 使不等式 成立,即 在區(qū)間 上能成立, ,則等價于在區(qū)間 上 若在區(qū)間 上存在實數(shù) 使不等式 成立,即 在區(qū)間 上能成立, ,則等價于在區(qū)間

20、 上的 (3)恰成立問題 若不等式 在區(qū)間 上恰成立, 則等價于不等式 的解集為 若不等式 在區(qū)間 上恰成立, 則等價于不等式 的解集為 , 七、直線和圓 1直線傾斜角與斜率的存在性及其取值范圍;直線方向向量的意義( 或 )及其直線方程的向量式( ( 為直線的方向向量)應用直線方程的點斜式、斜截式設直線方程時,一般可設直線的斜率為k,但你是否注意到直線垂直于x軸時,即斜率k不存在的情況? 2知直線縱截距 ,常設其方程為 或 ;知直線橫截距 ,常設其方程為 (直線斜率k存在時, 為k的倒數(shù))或 知直線過點 ,常設其方程為 或 注意:(1)直線方程的幾種形式:點斜式、斜截式、兩點式、截矩式、一般式

21、、向量式以及各種形式的局限性(如點斜式不適用于斜率不存在的直線,還有截矩式呢?) 與直線 平行的直線可表示為 ; 與直線 垂直的直線可表示為 ; 過點 與直線 平行的直線可表示為: ; 過點 與直線 垂直的直線可表示為: (2)直線在坐標軸上的截距可正、可負、也可為0直線兩截距相等 直線的斜率為-1或直線過原點;直線兩截距互為相反數(shù) 直線的斜率為1或直線過原點;直線兩截距絕對值相等 直線的斜率為 或直線過原點 (3)在解析幾何中,研究兩條直線的位置關系時,有可能這兩條直線重合,而在立體幾何中一般提到的兩條直線可以理解為它們不重合 3相交兩直線的夾角和兩直線間的到角是兩個不同的概念:夾角特指相交

22、兩直線所成的較小角,范圍是 ,而其到角是帶有方向的角,范圍是 注:點到直線的距離公式 特別: ; ; 4線性規(guī)劃中幾個概念:約束條件、可行解、可行域、目標函數(shù)、最優(yōu)解 5圓的方程:最簡方程 ;標準方程 ; 一般式方程 ; 參數(shù)方程 為參數(shù)); 直徑式方程 注意: (1)在圓的一般式方程中,圓心坐標和半徑分別是 (2)圓的參數(shù)方程為“三角換元”提供了樣板,常用三角換元有: , , , 6解決直線與圓的關系問題有“函數(shù)方程思想”和“數(shù)形結合思想”兩種思路,等價轉化求解,重要的是發(fā)揮“圓的平面幾何性質(zhì)(如半徑、半弦長、弦心距構成直角三角形,切線長定理、割線定理、弦切角定理等等)的作用!” (1)過圓

23、 上一點 圓的切線方程是: , 過圓 上一點 圓的切線方程是: , 過圓 上一點 圓的切線方程是: 如果點 在圓外,那么上述直線方程表示過點 兩切線上兩切點的“切點弦”方程 如果點 在圓內(nèi),那么上述直線方程表示與圓相離且垂直于 ( 為圓心)的直線方程, ( 為圓心 到直線的距離) 7曲線 與 的交點坐標 方程組 的解; 過兩圓 、 交點的圓(公共弦)系為 ,當且僅當無平方項時, 為兩圓公共弦所在直線方程 八、圓錐曲線 1圓錐曲線的兩個定義,及其“括號”內(nèi)的限制條件,在圓錐曲線問題中,如果涉及到其兩焦點(兩相異定點),那么將優(yōu)先選用圓錐曲線第一定義;如果涉及到其焦點、準線(一定點和不過該點的一定

24、直線)或離心率,那么將優(yōu)先選用圓錐曲線第二定義;涉及到焦點三角形的問題,也要重視焦半徑和三角形中正余弦定理等幾何性質(zhì)的應用 (1)注意:圓錐曲線第一定義與配方法的綜合運用; 圓錐曲線第二定義是:“點點距為分子、點線距為分母”,橢圓 點點距除以點線距商是小于1的正數(shù),雙曲線 點點距除以點線距商是大于1的正數(shù),拋物線 點點距除以點線距商是等于1圓錐曲線的焦半徑公式如下圖: 2圓錐曲線的幾何性質(zhì):圓錐曲線的對稱性、圓錐曲線的范圍、圓錐曲線的特殊點線、圓錐曲線的變化趨勢其中 ,橢圓中 、雙曲線中 重視“特征直角三角形、焦半徑的最值、焦點弦的最值及其頂點、焦點、準線等相互之間與坐標系無關的幾何性質(zhì)”,尤

25、其是雙曲線中焦半徑最值、焦點弦最值的特點 注意:等軸雙曲線的意義和性質(zhì) 3在直線與圓錐曲線的位置關系問題中,有“函數(shù)方程思想”和“數(shù)形結合思想”兩種思路,等價轉化求解特別是: 直線與圓錐曲線相交的必要條件是他們構成的方程組有實數(shù)解,當出現(xiàn)一元二次方程時,務必“判別式0”,尤其是在應用韋達定理解決問題時,必須先有“判別式0” 直線與拋物線(相交不一定交于兩點)、雙曲線位置關系(相交的四種情況)的特殊性,應謹慎處理 在直線與圓錐曲線的位置關系問題中,常與“弦”相關,“平行弦”問題的關鍵是“斜率”、“中點弦”問題關鍵是“韋達定理”或“小小直角三角形”或“點差法”、“長度(弦長)”問題關鍵是長度(弦長

26、)公式 ( , , )或“小小直角三角形” 如果在一條直線上出現(xiàn)“三個或三個以上的點”,那么可選擇應用“斜率”為橋梁轉化 4要重視常見的尋求曲線方程的方法(待定系數(shù)法、定義法、直譯法、代點法、參數(shù)法、交軌法、向量法等), 以及如何利用曲線的方程討論曲線的幾何性質(zhì)(定義法、幾何法、代數(shù)法、方程函數(shù)思想、數(shù)形結合思想、分類討論思想和等價轉化思想等),這是解析幾何的兩類基本問題,也是解析幾何的基本出發(fā)點 注意:如果問題中涉及到平面向量知識,那么應從已知向量的特點出發(fā),考慮選擇向量的幾何形式進行“摘帽子或脫靴子”轉化,還是選擇向量的代數(shù)形式進行“摘帽子或脫靴子”轉化 曲線與曲線方程、軌跡與軌跡方程是兩

27、個不同的概念,尋求軌跡或軌跡方程時應注意軌跡上特殊點對軌跡的“完備性與純粹性”的影響 在與圓錐曲線相關的綜合題中,常借助于“平面幾何性質(zhì)”數(shù)形結合(如角平分線的雙重身份)、“方程與函數(shù)性質(zhì)”化解析幾何問題為代數(shù)問題、“分類討論思想”化整為零分化處理、“求值構造等式、求變量范圍構造不等關系”等等 九、直線、平面、簡單多面體 1計算異面直線所成角的關鍵是平移(補形)轉化為兩直線的夾角計算 2計算直線與平面所成的角關鍵是作面的垂線找射影,或向量法(直線上向量與平面法向量夾角的余角),三余弦公式(最小角定理, ),或先運用等積法求點到直線的距離,后虛擬直角三角形求解注:一斜線與平面上以斜足為頂點的角的

28、兩邊所成角相等 斜線在平面上射影為角的平分線 3空間平行垂直關系的證明,主要依據(jù)相關定義、公理、定理和空間向量進行,請重視線面平行關系、線面垂直關系(三垂線定理及其逆定理)的橋梁作用注意:書寫證明過程需規(guī)范 特別聲明: 證明計算過程中,若有“中點”等特殊點線,則常借助于“中位線、重心”等知識轉化 在證明計算過程中常將運用轉化思想,將具體問題轉化 (構造) 為特殊幾何體(如三棱錐、正方體、長方體、三棱柱、四棱柱等)中問題,并獲得去解決 如果根據(jù)已知條件,在幾何體中有“三條直線兩兩垂直”,那么往往以此為基礎,建立空間直角坐標系,并運用空間向量解決問題 4直棱柱、正棱柱、平行六面體、長方體、正方體、正四面體、棱錐、正棱錐關于側棱、側面、對角面、平行于底的截面的幾何體性質(zhì) 如長方體中:對角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論