版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、高三數(shù)學知識點歸納梳理5篇最新分享 高三數(shù)學知識點11.有關平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復遇到的,而且是以各種各樣的問題(包括論證、計算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復習中,首先應從解決“平行與垂直”的有關問題著手,通過較為基本問題,熟悉公理、定理的內(nèi)容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規(guī)律-充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。2.判定兩個平面平行的方法:(1)根據(jù)定義-證明兩平面沒有公共點;(2)判定定理-證明一個平面內(nèi)的兩條相
2、交直線都平行于另一個平面;(3)證明兩平面同垂直于一條直線。3.兩個平面平行的主要性質(zhì):(1)由定義知:“兩平行平面沒有公共點”;(2)由定義推得:“兩個平面平行,其中一個平面內(nèi)的直線必平行于另一個平面”;(3)兩個平面平行的性質(zhì)定理:“如果兩個平行平面同時和第三個平面相交,那么它們的交線平行”;(4)一條直線垂直于兩個平行平面中的一個平面,它也垂直于另一個平面;(5)夾在兩個平行平面間的平行線段相等;(6)經(jīng)過平面外一點只有一個平面和已知平面平行。高三數(shù)學知識點2不等式這部分知識,滲透在中學數(shù)學各個分支中,有著十分廣泛的應用。因此不等式應用問題體現(xiàn)了一定的綜合性、靈活多樣性,對數(shù)學各部分知識
3、融會貫通,起到了很好的促進作用。在解決問題時,要依據(jù)題設與結(jié)論的結(jié)構(gòu)特點、內(nèi)在聯(lián)系、選擇適當?shù)慕鉀Q方案,最終歸結(jié)為不等式的求解或證明。不等式的應用范圍十分廣泛,它始終貫串在整個中學數(shù)學之中。諸如集合問題,方程(組)的解的討論,函數(shù)單調(diào)性的研究,函數(shù)定義域的確定,三角、數(shù)列、復數(shù)、立體幾何、解析幾何中的值、最小值問題,無一不與不等式有著密切的聯(lián)系,許多問題,最終都可歸結(jié)為不等式的求解或證明。知識整合1。解不等式的核心問題是不等式的同解變形,不等式的性質(zhì)則是不等式變形的理論依據(jù),方程的根、函數(shù)的性質(zhì)和圖象都與不等式的解法密切相關,要善于把它們有機地聯(lián)系起來,互相轉(zhuǎn)化。在解不等式中,換元法和圖解法是
4、常用的技巧之一。通過換元,可將較復雜的不等式化歸為較簡單的或基本不等式,通過構(gòu)造函數(shù)、數(shù)形結(jié)合,則可將不等式的解化歸為直觀、形象的圖形關系,對含有參數(shù)的不等式,運用圖解法可以使得分類標準明晰。2。整式不等式(主要是一次、二次不等式)的解法是解不等式的基礎,利用不等式的性質(zhì)及函數(shù)的單調(diào)性,將分式不等式、絕對值不等式等化歸為整式不等式(組)是解不等式的基本思想,分類、換元、數(shù)形結(jié)合是解不等式的常用方法。方程的根、函數(shù)的性質(zhì)和圖象都與不等式的解密切相關,要善于把它們有機地聯(lián)系起來,相互轉(zhuǎn)化和相互變用。3。在不等式的求解中,換元法和圖解法是常用的技巧之一,通過換元,可將較復雜的不等式化歸為較簡單的或基
5、本不等式,通過構(gòu)造函數(shù),將不等式的解化歸為直觀、形象的圖象關系,對含有參數(shù)的不等式,運用圖解法,可以使分類標準更加明晰。4。證明不等式的方法靈活多樣,但比較法、綜合法、分析法仍是證明不等式的最基本方法。要依據(jù)題設、題斷的結(jié)構(gòu)特點、內(nèi)在聯(lián)系,選擇適當?shù)淖C明方法,要熟悉各種證法中的推理思維,并掌握相應的步驟,技巧和語言特點。比較法的一般步驟是:作差(商)變形判斷符號(值)。高三數(shù)學知識點3考點一:集合與簡易邏輯集合部分一般以選擇題出現(xiàn),屬容易題。重點考查集合間關系的理解和認識。近年的試題加強了對集合計算化簡能力的考查,并向無限集發(fā)展,考查抽象思維能力。在解決這些問題時,要注意利用幾何的直觀性,并注
6、重集合表示方法的轉(zhuǎn)換與化簡。簡易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關系、邏輯聯(lián)結(jié)詞、“充要關系”、命題真?zhèn)蔚呐袛?、全稱命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語表達數(shù)學解題過程和邏輯推理??键c二:函數(shù)與導數(shù)函數(shù)是高考的重點內(nèi)容,以選擇題和填空題的為載體針對性考查函數(shù)的定義域與值域、函數(shù)的性質(zhì)、函數(shù)與方程、基本初等函數(shù)(一次和二次函數(shù)、指數(shù)、對數(shù)、冪函數(shù))的應用等,分值約為10分,解答題與導數(shù)交匯在一起考查函數(shù)的性質(zhì)。導數(shù)部分一方面考查導數(shù)的運算與導數(shù)的幾何意義,另一方面考查導數(shù)的簡單應用,如求函數(shù)的單調(diào)區(qū)間、極值與最值等,通常以客觀題的形式出現(xiàn),屬于容
7、易題和中檔題,三是導數(shù)的綜合應用,主要是和函數(shù)、不等式、方程等聯(lián)系在一起以解答題的形式出現(xiàn),如一些不等式恒成立問題、參數(shù)的取值范圍問題、方程根的個數(shù)問題、不等式的證明等問題??键c三:三角函數(shù)與平面向量一般是2道小題,1道綜合解答題。小題一道考查平面向量有關概念及運算等,另一道對三角知識點的補充。大題中如果沒有涉及正弦定理、余弦定理的應用,可能就是一道和解答題相互補充的三角函數(shù)的圖像、性質(zhì)或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數(shù)形結(jié)合思想在解題中的應用。向量重點考查平面向量數(shù)量積的概念及應用,向量與直線、圓錐曲線、數(shù)列、不等式、三角函數(shù)等結(jié)合,解決角度、垂直、共線等問題是“
8、新熱點”題型.考點四:數(shù)列與不等式不等式主要考查一元二次不等式的解法、一元二次不等式組和簡單線性規(guī)劃問題、基本不等式的應用等,通常會在小題中設置1到2道題。對不等式的工具性穿插在數(shù)列、解析幾何、函數(shù)導數(shù)等解答題中進行考查.在選擇、填空題中考查等差或等比數(shù)列的概念、性質(zhì)、通項公式、求和公式等的靈活應用,一道解答題大多凸顯以數(shù)列知識為工具,綜合運用函數(shù)、方程、不等式等解決問題的能力,它們都屬于中、高檔題目.考點五:立體幾何與空間向量一是考查空間幾何體的結(jié)構(gòu)特征、直觀圖與三視圖;二是考查空間點、線、面之間的位置關系;三是考查利用空間向量解決立體幾何問題:利用空間向量證明線面平行與垂直、求空間角等(文
9、科不要求).在高考試卷中,一般有12個客觀題和一個解答題,多為中檔題??键c六:解析幾何一般有12個客觀題和1個解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的位置關系、圓錐曲線的定義應用、標準方程的求解、離心率的計算等,解答題則主要考查直線與橢圓、拋物線等的位置關系問題,經(jīng)常與平面向量、函數(shù)與不等式交匯,考查一些存在性問題、證明問題、定點與定值、最值與范圍問題等??键c七:算法復數(shù)推理與證明高考對算法的考查以選擇題或填空題的形式出現(xiàn),或給解答題披層“外衣”.考查的熱點是流程圖的識別與算法語言的閱讀理解.算法與數(shù)列知識的網(wǎng)絡交匯命題是考查的主流.復數(shù)考查的重點是復數(shù)的有關概念、復
10、數(shù)的代數(shù)形式、運算及運算的幾何意義,一般是選擇題、填空題,難度不大.推理證明部分命題的方向主要會在函數(shù)、三角、數(shù)列、立體幾何、解析幾何等方面,單獨出題的可能性較小。對于理科,數(shù)學歸納法可能作為解答題的一小問.高三數(shù)學知識點41.定義:用符號,=,號連接的式子叫不等式。2.性質(zhì):不等式的兩邊都加上或減去同一個整式,不等號方向不變。不等式的兩邊都乘以或者除以一個正數(shù),不等號方向不變。不等式的兩邊都乘以或除以同一個負數(shù),不等號方向相反。3.分類:一元一次不等式:左右兩邊都是整式,只含有一個未知數(shù),且未知數(shù)的次數(shù)是1的不等式叫一元一次不等式。一元一次不等式組:a.關于同一個未知數(shù)的幾個一元一次不等式合
11、在一起,就組成了一元一次不等式組。b.一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。4.考點:解一元一次不等式(組)根據(jù)具體問題中的數(shù)量關系列不等式(組)并解決簡單實際問題用數(shù)軸表示一元一次不等式(組)的解集高三數(shù)學知識點5一、排列1定義(1)從n個不同元素中取出m個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一排列。(2)從n個不同元素中取出m個元素的所有排列的個數(shù),叫做從n個不同元素中取出m個元素的排列數(shù),記為amn.2排列數(shù)的公式與性質(zhì)(1)排列數(shù)的公式:amn=n(n-1)(n-2)(n-m+1)特例:當m=n時,amn=n!=n(n
12、-1)(n-2)321規(guī)定:0!=1二、組合1定義(1)從n個不同元素中取出m個元素并成一組,叫做從n個不同元素中取出m個元素的一個組合(2)從n個不同元素中取出m個元素的所有組合的個數(shù),叫做從n個不同元素中取出m個元素的組合數(shù),用符號cmn表示。2比較與鑒別由排列與組合的定義知,獲得一個排列需要“取出元素”和“對取出元素按一定順序排成一列”兩個過程,而獲得一個組合只需要“取出元素”,不管怎樣的順序并成一組這一個步驟。排列與組合的區(qū)別在于組合僅與選取的元素有關,而排列不僅與選取的元素有關,而且還與取出元素的順序有關。因此,所給問題是否與取出元素的順序有關,是判斷這一問題是排列問題還是組合問題的
13、理論依據(jù)。三、排列組合與二項式定理知識點1.計數(shù)原理知識點乘法原理:n=n1n2n3nm(分步)加法原理:n=n1+n2+n3+nm(分類)2.排列(有序)與組合(無序)anm=n(n-1)(n-2)(n-3)-(n-m+1)=n!/(n-m)!ann=n!cnm=n!/(n-m)!m!cnm=cnn-mcnm+cnm+1=cn+1m+1k?k!=(k+1)!-k!3.排列組合混合題的解題原則:先選后排,先分再排排列組合題的主要解題方法:優(yōu)先法:以元素為主,應先滿足特殊元素的要求,再考慮其他元素.以位置為主考慮,即先滿足特殊位置的要求,再考慮其他位置.捆綁法(集團元素法,把某些必須在一起的元素
14、視為一個整體考慮)插空法(解決相間問題)間接法和去雜法等等在求解排列與組合應用問題時,應注意:(1)把具體問題轉(zhuǎn)化或歸結(jié)為排列或組合問題;(2)通過分析確定運用分類計數(shù)原理還是分步計數(shù)原理;(3)分析題目條件,避免“選取”時重復和遺漏;(4)列出式子計算和作答.經(jīng)常運用的數(shù)學思想是:分類討論思想;轉(zhuǎn)化思想;對稱思想.4.二項式定理知識點:(a+b)n=cn0ax+cn1an-1b1+cn2an-2b2+cn3an-3b3+cnran-rbr+-+cnn-1abn-1+cnnbn特別地:(1+x)n=1+cn1x+cn2x2+cnrxr+cnnxn主要性質(zhì)和主要結(jié)論:對稱性cnm=cnn-m二項式系數(shù)在中間。(要注意n為奇數(shù)還是偶數(shù),答案是中間一項還是中間兩項)所有二項式系數(shù)的和:cn0+cn1+cn2+cn3+cn4+cnr+cnn=2n奇數(shù)項二項式系數(shù)的和=偶數(shù)項而是系數(shù)的和cn0+cn2+cn4+cn6+cn8+=cn1+cn3+cn5+cn7+cn9+=2n-1通項為第r+1項:tr+1=cnran-rbr作用:處理與指定項、特定項、常數(shù)項、有理項等有關問題。5.二項式定理的應用:解決有關近似計算、整除問題,運用二項展開式定理并且結(jié)合放縮法證明與指數(shù)有關的不等式。6.注意二項式系數(shù)與項的系數(shù)(字母項的系數(shù),指定項的系數(shù)等,指運算結(jié)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物流倉庫經(jīng)理年度述職報告
- 智慧教室裝修方案
- 從業(yè)人員安全生產(chǎn)教育培訓
- 孕期糖尿病飲食和護理
- 老年人糖尿病病人的護理
- 齲齒病的發(fā)展過程圖解
- 2.3.1物質(zhì)的量的單位-摩爾 課件高一上學期化學人教版(2019)必修第一冊
- 吉林省2024七年級數(shù)學上冊第1章有理數(shù)1.10有理數(shù)的除法課件新版華東師大版
- 吉林省2024七年級數(shù)學上冊第1章有理數(shù)全章整合與提升課件新版華東師大版
- 深度學習及自動駕駛應用 課件 第9、10章 生成對抗網(wǎng)絡及自動駕駛應用、強化學習理論及自動駕駛應用實踐
- 人教版二年級數(shù)學上冊第六單元《表內(nèi)乘法(二)》說課稿(含14課時)
- CJT 482-2015 城市軌道交通橋梁球型鋼支座
- 我國不銹鋼管行業(yè)現(xiàn)狀分析
- 2024年關于印發(fā)全國社會心理服務體系建設試點5篇
- 維修水池合同協(xié)議書
- 2024年中級經(jīng)濟師考試題庫含答案(完整版)
- 高效餐飲服務承諾
- 2024年05月浙江嘉興職業(yè)技術學院海鹽學院招考聘用高層次緊缺人才45人筆試歷年高頻考點(難、易錯點)附帶答案詳解
- 精準醫(yī)療與個體化治療
- 職業(yè)技術學院計算機應用技術專業(yè)教學標準
- FZ∕T 73037-2019 針織運動襪行業(yè)標準
評論
0/150
提交評論