一元二次方程知識(shí)點(diǎn)總結(jié)0001_第1頁(yè)
一元二次方程知識(shí)點(diǎn)總結(jié)0001_第2頁(yè)
一元二次方程知識(shí)點(diǎn)總結(jié)0001_第3頁(yè)
一元二次方程知識(shí)點(diǎn)總結(jié)0001_第4頁(yè)
一元二次方程知識(shí)點(diǎn)總結(jié)0001_第5頁(yè)
已閱讀5頁(yè),還剩20頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、21章一元二次方程知識(shí)點(diǎn)元二次方程1、一元二次方程概念:等號(hào)兩邊是整式,含有一個(gè)未知數(shù),并且未知數(shù)的最高 次數(shù)是2的方程叫做一元二次方程。注意:(1) 一元二次方程必須是一個(gè)整式方程;(2)只含有一個(gè)未知數(shù);(3) 未知數(shù)的最高次數(shù)是2 ;( 4)二次項(xiàng)系數(shù)不能等于0元二次方程的一般形式:ax2 bx c 0(a0),它的特征是:等式左邊是2、一個(gè)關(guān)于未知數(shù)x的二次三項(xiàng)式,等式右邊是零,其中 ax2叫做二次項(xiàng),a叫做 二次項(xiàng)系數(shù);bx叫做一次項(xiàng),b叫做一次項(xiàng)系數(shù);c叫做常數(shù)項(xiàng)。注意:(1)二次項(xiàng)、二次項(xiàng)系數(shù)、一次項(xiàng)、一次項(xiàng)系數(shù),常數(shù)項(xiàng)都包括它前 面的符號(hào)。(2)要準(zhǔn)確找出一個(gè)一元二次方程的二次

2、項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng),必須把它先化為一般形式。(3)形如ax2 bx c 0不一定是一元二次方程,當(dāng)且僅當(dāng) a 0時(shí)是一元二次方程。元二次方程的解使方程左、右兩邊相等的未知數(shù)的值叫做方程的解,如:當(dāng)x 2時(shí),2 2x 3x 20所以x 2是x 3x 20方程的解。一元二次方程的解也叫一元二次方程的根。一元二次方程有兩個(gè)根(相等或不等)元二次方程的解法1、直接開(kāi)平方法:直接開(kāi)平方法理論依據(jù):平方根的定義。利用平方根的定義直接開(kāi)平方求一元二次方程的解的方法叫做直接開(kāi)平方法。根據(jù)平方根的定義可知,x a y/b,當(dāng) b0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根;II當(dāng) =0時(shí),一元二次方程有2個(gè)相

3、同的實(shí)數(shù)根;III當(dāng) 0(2) 方程有兩個(gè)相等的實(shí)數(shù)根b2 4ac=0(3) 方程沒(méi)有實(shí)數(shù)根b2 4ac 0方程有兩個(gè)不相等的實(shí)數(shù)根;b2- 4ac=0方程有兩個(gè)相等的實(shí)數(shù)根;b2 4ac - -B. k 且七 * 044有兩個(gè)不相等的實(shí)數(shù)根,7 .關(guān)于x的一元二次方程(ac)x2a cbx 0有兩個(gè)相等的實(shí)數(shù)根,那么以4a、b、c為三邊的三角形是(A以a為斜邊的直角三角形C以b為底邊的等腰三角形B、以c為斜邊的直角三角形D、以c為底邊的等腰三角形8.關(guān)于x的一元二次方程x2A.20的根的情況是 (有兩個(gè)不相等的實(shí)根B.有兩個(gè)相等的實(shí)根C.無(wú)實(shí)數(shù)根 D.不能確定3x9.已知關(guān)于x的方程x2 4

4、x a 0有兩個(gè)相同的實(shí)數(shù)根,則a的值10 .關(guān)于只-2定+楓=0有兩個(gè)實(shí)數(shù)根,11 .已知關(guān)于x的方程kx2 6x 是 .則的取值范圍是9 0有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍12 .若關(guān)于x的一元二次方程X2 2x m 0有兩個(gè)不相等的實(shí)數(shù)根,則化簡(jiǎn)代的一元二次方程數(shù)式J(m 2)2 |m 1的結(jié)果為13.如果關(guān)于x的方程X2 ax10有兩個(gè)相等的實(shí)數(shù)根,那么a的值等14 .如果關(guān)于x的方程kx22x10有實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是.x2-(k+6)x+4(k- 3)=0 一定有兩個(gè)不相等的實(shí)15. 求證:不論k取什么實(shí)數(shù),方程 數(shù)根.16. 已知a、b、c為三角形三邊長(zhǎng),且方程b (

5、x2-1)-2ax+c ()2+1)=0有兩個(gè)相等的實(shí) 數(shù)根.試判斷此三角形形狀,說(shuō)明理由四、一元二次方程根與系數(shù)的關(guān)系時(shí),兩根互為倒數(shù);1、關(guān)于 x 的方程 2x2+(m2- 9)x+m+1=0,當(dāng) m=m=時(shí),兩根互為相反數(shù).X12+X22=,該方程的另12、設(shè)X1、X2是方程3X2+4x - 5=0的兩根,則一X13、 若X1=%/3 2是二次方程x2+ax+1=0的一個(gè)根,貝U a三一個(gè)根X2 =4、 方程x2+2x+a- 1=0有兩個(gè)負(fù)根,則a的取值范圍是_15、若 P2 - 3p - 5=0, q2- 3q - 5=0,且 pMq,則冷 q&已知方程x2(k 1)x k 0的兩根平

6、方和是5,7、如果把一元二次方程 X - 3x- 1=0的兩根各加上 的兩根,12P1作為一個(gè)新一元二次方程8.方程3x2ax 10的兩個(gè)根分別是ax2 6x40兩個(gè)根的一半,則9 .如果a、是B是一元二次方程x2+ 3x- 2= 0的兩個(gè)根,則a 2 + 2a p的值10.已知三角形兩邊長(zhǎng)是方程x2 5x 6 0的兩個(gè)根,第三邊c=3,則三角形的的周長(zhǎng)是考點(diǎn):一元二次方程的應(yīng)用一、考點(diǎn)講解:構(gòu)建一元二次方程數(shù)學(xué)模型,常見(jiàn)的模型如下:與幾何圖形有關(guān)的應(yīng)用:如幾何圖形面積模型、勾股定理等;有關(guān)增長(zhǎng)率的應(yīng)用:此類(lèi)問(wèn)題是在某個(gè)數(shù)據(jù)的基礎(chǔ)上連續(xù)增長(zhǎng)(降低)兩次得到新數(shù)據(jù),常見(jiàn)的等量關(guān)系是 a(1 X)

7、2=b,其中a表示增長(zhǎng)(降低)前的數(shù)據(jù),X表示增長(zhǎng)率(降低率),b表示后來(lái)的數(shù)據(jù)。注意:所得解中,增長(zhǎng)率不為負(fù),降低率不超過(guò)1。經(jīng)濟(jì)利潤(rùn)問(wèn)題:總利潤(rùn)=(單件銷(xiāo)售額-單件成本)X銷(xiāo)售數(shù)量;或者,總利潤(rùn)=總銷(xiāo)售額-總成本。動(dòng)點(diǎn)問(wèn)題:此類(lèi)問(wèn)題是一般幾何問(wèn)題的延伸,根據(jù)條件設(shè)出未知數(shù)后,要想辦法把圖中變化的線段用未知數(shù)表示出來(lái),再根據(jù)題目中的等量關(guān)系列出方程。注重解法的選擇與驗(yàn)根:在具體問(wèn)題中要注意恰當(dāng)?shù)倪x擇解法,以保證解題過(guò)程簡(jiǎn)潔流暢,特別要對(duì)方程的解注意檢驗(yàn),根據(jù)實(shí)際做出正確取舍,以保證結(jié)論的準(zhǔn)確性.二、經(jīng)典考題剖析:C【考題11 (2009、深圳南山區(qū))課外植物小組準(zhǔn)備利用學(xué)校倉(cāng)庫(kù)旁的一塊空地,

8、開(kāi)辟一個(gè)面積為130平方米的花圃(如圖 1-2- 1 ),打算一面利用長(zhǎng)為 15米的倉(cāng)庫(kù)墻面,三面利用長(zhǎng)為33米的舊圍欄,求花圃的長(zhǎng)和寬.解:設(shè)與墻相接的兩邊長(zhǎng)都為x米,則另一邊長(zhǎng)為33 2x米,閨 1-5-J那么這個(gè)新一元二次方程是.依題意得x 33 2x130132x2 33x 1300X110X22又.當(dāng)為10時(shí),33 2x13X213邁時(shí),33 2x 20 1513x T不合題意,舍去.10答:花圃的長(zhǎng)為13米,寬為10米.民的住房面積由現(xiàn)在的人均約為10平方米提高到平方米,若每年的增長(zhǎng)率相同,則年增【考題21 (2009、襄樊)為了改善居民住房條件,我市計(jì)劃用未來(lái)兩年的時(shí)間,將城鎮(zhèn)居

9、長(zhǎng)率為()% C. 11%解:設(shè)年增長(zhǎng)率為X,根據(jù)題意得10(1+x)2解得 x1 = , x2 =.因?yàn)樵鲩L(zhǎng)率不為負(fù),所以x=。故選D。【考題31 (2009、??冢┠乘l(fā)商場(chǎng)經(jīng)銷(xiāo)一種高檔水果如果每千克盈利10元,每天可售出500千克,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在進(jìn)貨價(jià)不變的情況下,若每千克漲價(jià)元,日銷(xiāo)售量將減少20千克,現(xiàn)該商場(chǎng)要保證每天盈利6000元,同時(shí)又要使顧客得到實(shí)惠,那么每千克應(yīng)漲價(jià)多少元解:設(shè)每千克水果應(yīng)漲價(jià) x元,依題意,得(500 2 0 X)(10+X)=6000.整理,得 x2 15x + 50=0 .解這個(gè)方程,x1=5, x2=10.要使顧客得到實(shí)惠,應(yīng)取x=5.答:每千

10、克應(yīng)漲價(jià) 5元.點(diǎn)撥:此類(lèi)經(jīng)濟(jì)問(wèn)題在設(shè)未知數(shù)時(shí),一般設(shè)漲價(jià)或降價(jià)為未知數(shù);應(yīng)根據(jù)“要使顧客得到實(shí)惠”來(lái)取舍根的情況.【考題41如圖,在 ABC中,/ B=90 , AB=5, BC=7,點(diǎn)P從A點(diǎn)開(kāi)始沿AB邊向點(diǎn)B點(diǎn)以1cm/s的速度移動(dòng),點(diǎn) Q從B點(diǎn)開(kāi)始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng).(1)如果點(diǎn)P、Q分別從A、B兩點(diǎn)同時(shí)出發(fā),經(jīng)過(guò)幾秒鐘,PBQ的面積等于4(2)如果點(diǎn)P、Q分別從A、B兩點(diǎn)同時(shí)出發(fā),經(jīng)過(guò)幾秒鐘,PQ的長(zhǎng)度等于5解:(1)設(shè)經(jīng)過(guò)x秒鐘,PBQ的面積等于4,則由題意得 AP=x, BP=5 X, BQ=2x,丄1由 2 BP- BQ=4, 得 2 (5 x) 2x=4,解

11、得,x1=1, x2 =4.當(dāng)x=4時(shí),BQ=2x=8 7=BC,不符合題意。故 x=12 2 2+ (2x)=5 ,2 2 2(2)由 BP +BQ =5 得(5 x)解得x1=0 (不合題意),x2=2.所以2秒后,PQ的長(zhǎng)度等于5。三、針對(duì)性訓(xùn)練:小明的媽媽上周三在自選商場(chǎng)花10元錢(qián)買(mǎi)了幾瓶酸奶,周六再去買(mǎi)時(shí),正好遇上商場(chǎng)搞酬賓活動(dòng),同樣的酸奶,每瓶比周三便宜0. 5元,結(jié)果小明的媽媽只比上次多花了2元錢(qián),卻比上次多買(mǎi)了2瓶酸奶,問(wèn)她上周三買(mǎi)了幾瓶合肥百貨大摟服裝柜在銷(xiāo)售中發(fā)現(xiàn):“寶樂(lè)”牌童裝平均每天可售出20件,每件盈利404元,那么平均每天就可多售元。為了迎接“十一”國(guó)慶節(jié),商場(chǎng)決定

12、采取適當(dāng)?shù)慕祪r(jià)措施,擴(kuò)大銷(xiāo)售量,增加盈利,盡快減少庫(kù)存。經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):如果每件童裝降價(jià)出8件。要想平均每天在銷(xiāo)售這種童裝上盈利1200元,那么每件童裝應(yīng)降價(jià)多少在寬為20米、長(zhǎng)為32米的矩形地面上,修筑同樣寬的兩條互相垂直的道路,余下部分作為耕地,要使耕地面積為 540米2,道路的寬應(yīng)為多少4 .小紅的媽媽前年存了5000元一年期的定期儲(chǔ)蓄,到期后自動(dòng)轉(zhuǎn)存今年到期扣除利息稅(利息稅為利息的20%),共取得5145元求這種儲(chǔ)蓄的年利率.(精確到%)5.如圖12-3, ABC中,/ B=90 點(diǎn)P從A點(diǎn)開(kāi)始沿 AB向點(diǎn)B以1cm/s的速度移動(dòng),點(diǎn)Q從B點(diǎn)開(kāi)始沿BC邊向C點(diǎn)以2cm/s的速度移動(dòng)。

13、(1)如果P、Q分別從A、B同時(shí)出發(fā),經(jīng)幾秒鐘,使 ABQ的面積等于8cm2如果P、Q分別從A、B同時(shí)出發(fā),并且 P到B后又繼續(xù)在BC邊上前進(jìn),Q以C后又繼續(xù)在AC邊上前進(jìn),經(jīng)幾秒鐘,使 PCQ的面積等于 cm2。解:依題意,得:2 (6-x) 2x=8解這個(gè)方程得:x1=2, x2=4即經(jīng)過(guò)2s,點(diǎn)P到距離B點(diǎn)4cm處,點(diǎn)Q到距離B點(diǎn)4cm處;經(jīng)過(guò)4s,點(diǎn)P到距離B點(diǎn)2cm處,點(diǎn)Q到距離B點(diǎn)8cm處。故本小題有兩解。(2)設(shè)經(jīng)過(guò)x秒,點(diǎn)P移動(dòng)到BC上,且有CP =( 14-x) cm,點(diǎn)Q移動(dòng)到CA上,且命名CQ=(2x-8) cm,過(guò) Q作 QD丄CB于 D。QD AB2x 8 AC,即6

14、(2x 8)QD= 10。1依題意,得:2 (14-x) 106(2x 8)解這個(gè)方程得:x1=7, x2=11經(jīng)過(guò)7s,點(diǎn)P在BC距離C點(diǎn)7cm處,點(diǎn)Q在CA上距離C點(diǎn)6cm處,使PCQ= 經(jīng)過(guò)11s,點(diǎn)P在BC距離C點(diǎn)3cm處,點(diǎn)Q在CA上距離C點(diǎn)14cm處,/ 14 0,點(diǎn)Q已超出CA范圍,此解不存在。故本題只有一解。例1、某種商品原價(jià)50元。因銷(xiāo)售不暢,3月份降價(jià)10%,從4月份開(kāi)始漲價(jià),5月份的售 價(jià)為元,則4、5月份兩個(gè)月平均漲價(jià)率為思維點(diǎn)擊:由題意,3月份的售價(jià)可以用 50X( 110%)表示,若設(shè)4、5月份兩個(gè)月平均漲價(jià)率為x,則4月份的售價(jià)是50X( 1 10%) X( 1

15、+ X ) , 5月份的售價(jià)是50X( 1 10%)X( 1+X ) (1 + X )即 50 X( 1 10%) X( 1 + x )2,由于5月份的售價(jià)已知,所以可列出一個(gè)方程,進(jìn)而解決本題。解:設(shè)4、5月份兩個(gè)月平均漲價(jià)率為 X ,由題意,得21+ X)250 X( 110%) X( 1+x )=。整理,得(解得:X1 0.2 20%, X22.2 (不合題意,舍去)。所以4、5月份兩個(gè)月平均漲價(jià)率為 20%。解后反思:列方程解應(yīng)用題,要注意求得的方程的解必須符合題意。800平方米求截去正方例2、如圖,一塊長(zhǎng)和寬分別為60厘米和40厘米的長(zhǎng)方形鐵皮,要在它的四角截去四個(gè)相等的小正方形,折

16、成一個(gè)無(wú)蓋的長(zhǎng)方體水槽,使它的底面積為形的邊長(zhǎng)思維點(diǎn)擊:設(shè)截去正方形的邊長(zhǎng) X厘米之后,關(guān)鍵在于列出底面(圖示虛線部分)長(zhǎng)和寬的代數(shù)式結(jié)合圖示和原有長(zhǎng)方形的長(zhǎng)和寬,不難得出這一代數(shù)式解:設(shè)截去正方形的邊長(zhǎng)為X厘米,根據(jù)題意,得(60 2x) (40- 2x) = 800.原方程可寫(xiě)成:X2 50x4000.解這個(gè)方程,得x110, x240.如果截去的小正方形的邊長(zhǎng)為40厘米,那么左下角和右下角的兩個(gè)小正方形的邊長(zhǎng)之和為80厘米,這超過(guò)了長(zhǎng)方形鐵皮的長(zhǎng)60厘米,因此X2 40不符合題意,應(yīng)舍去。求得方另外三邊用X 55 2x 300 .整理,2得 2x 55x 3000 答:截去正方形的邊長(zhǎng)為

17、 10厘米。溫馨提示:在應(yīng)用一元二次方程解實(shí)際問(wèn)題時(shí),也像以前學(xué)習(xí)一元一次方程一樣, 意分析題意,抓住主要的數(shù)量關(guān)系,列出方程,把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題來(lái)解決 程的解之后,要注意檢驗(yàn)是否符合題意,然后得到原問(wèn)題的解答范例探究基礎(chǔ)思維探究探究點(diǎn)1、與圖形有關(guān)的問(wèn)題例1、為了培養(yǎng)孩子從小熱愛(ài)動(dòng)物的良好品德,在一邊靠校園20米的院墻,355米長(zhǎng)的籬笆,圍起一個(gè)面積為 300 m的矩形場(chǎng)地.組織生物小組學(xué)生喂養(yǎng)小鳥(niǎo)、兔子等小動(dòng)物.問(wèn)這個(gè)場(chǎng)地的各邊長(zhǎng)為多少思維點(diǎn)擊:設(shè)與院墻垂直的邊長(zhǎng)為X m,則與院墻平行的邊長(zhǎng)為(55-2x)m,根據(jù)矩形面積公式可列出方程式.解:設(shè)與院墻垂直的邊長(zhǎng)為X m,則與院墻平行

18、的邊長(zhǎng)為(55-2x)m,根據(jù)題意得:解方程,得X1 2O,X215.x= 20,即與院墻垂直的邊長(zhǎng)為20米時(shí),另一邊長(zhǎng)為20米,即與院墻平行的邊長(zhǎng)為15 米.x= 15,即與院墻垂直的邊長(zhǎng)為15米時(shí),另一邊長(zhǎng)為25米,即與院墻平行的邊長(zhǎng)為25米.由于校園的院墻長(zhǎng) 20米,20 25,所以此解不合題意,應(yīng)舍去.答:與院墻垂直的邊長(zhǎng)為 20米,與院墻平行的邊長(zhǎng)為 15米.溫馨提示:若設(shè)與院墻平行的邊長(zhǎng)為X m,則與院墻垂直的邊長(zhǎng)為m .根據(jù)矩2形面積公式也可以列出方程式.但出現(xiàn)了分?jǐn)?shù),不如前一種設(shè)法好.探究點(diǎn)2、利潤(rùn)問(wèn)題例2、某商場(chǎng)服裝柜在銷(xiāo)售中發(fā)現(xiàn):寶樂(lè)”牌童裝平均每天可售出20件,每件盈利4

19、0“、元。為了迎接 六一 ”國(guó)際兒童節(jié),商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,擴(kuò)大銷(xiāo)售量,增加盈利,減少庫(kù)存。經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):如果每件童裝每降價(jià) 4元,那么平均每天就可多售出8件。要想平均每天在銷(xiāo)售這種童裝上盈利1200元,那么每件童裝應(yīng)降價(jià)多少元思維點(diǎn)擊:每天售出的童裝件數(shù) X每件童裝的利潤(rùn)=每天這種童裝的總利潤(rùn)。解:設(shè)每件童裝應(yīng)降價(jià) X元,根據(jù)題意,得20-8 40 X 1200.410。化簡(jiǎn),得 X2 30X 200 0,解得 X1 20,X2因?yàn)橐M快減少庫(kù)存,所以x應(yīng)取20。答:每件童裝應(yīng)降價(jià) 20元。溫馨提示:求出方程的解后,必須根據(jù)要求,對(duì)方程的解進(jìn)行合理取舍。探究點(diǎn)3、增長(zhǎng)率問(wèn)題例3、某

20、廠1月份生產(chǎn)零件2萬(wàn)個(gè),第一季度共生產(chǎn)零件萬(wàn)個(gè),若每月的增長(zhǎng)率相同,求每月的增長(zhǎng)率。思維點(diǎn)擊:解:設(shè)每月的平均增長(zhǎng)率為x,依題意,得 2+2( 1+X)+2( 1+X)2=經(jīng)整理,得100x2+300x-99=0,解得xi=30%, X2=不合題意,舍去。答:每月的增長(zhǎng)率為 30%。溫馨提示:(1)解本題的關(guān)鍵是理解 “萬(wàn)個(gè)零件是3個(gè)月生產(chǎn)量的總和”,一定要注意審題;(2 )牢記公式a 1 X n b,a為增長(zhǎng)率(降低)前的基礎(chǔ)數(shù)量,X為增長(zhǎng)率(降低率),n為增長(zhǎng)(降低)的次數(shù),b為增長(zhǎng)(降低)后的數(shù)量綜合思維探究例4、一塊矩形耕地大小尺寸如圖1所示,要在這塊地上沿東西和南北方向分別挖2條和4

21、條小渠,如果小渠的寬相等,而且要保證余下的耕地面積為9600米2,那么水渠應(yīng)挖多寬思維點(diǎn)擊: 這類(lèi)問(wèn)題的特點(diǎn)是, 挖掘所占用土地面積只與挖渠的條數(shù), 渠道的寬度有關(guān),最好而與渠道的位置無(wú)關(guān), 為了研究問(wèn)題方便可分別把東西和南北方向的渠道移動(dòng)到一起靠一邊)。如圖2所示,那么剩余可耕的長(zhǎng)方形土地的長(zhǎng)為(162-2x)米,寬為(64- 4X)米。解: 設(shè)水渠應(yīng)挖x 米寬,則根據(jù)題意,得(162 2x)( 644x) 96002X2 97X 96解得: x1 1,x2 96(舍去 )答: 水渠應(yīng)挖 1米寬。溫馨提示: 此類(lèi)問(wèn)題可采用 “靠邊 ”的辦法使得圖形便于表達(dá)長(zhǎng)、寬,主要體現(xiàn)了數(shù)學(xué)的 化歸思想

22、.創(chuàng)新拓展思維探究例 5、 機(jī)械加工需用油進(jìn)行潤(rùn)滑以減小摩擦,某企業(yè)加工一臺(tái)大型機(jī)械設(shè)備潤(rùn)滑用油量為 90 千克,用油的重復(fù)利用率為60%,按此計(jì)算,加工一臺(tái)大型機(jī)械設(shè)備的實(shí)際耗油量為 36 千克。為了建設(shè)節(jié)約型社會(huì),減少油耗,該企業(yè)的甲乙兩個(gè)車(chē)間都組織了人員為減少實(shí)70 千克,用油的際油耗量進(jìn)行攻關(guān)。甲車(chē)間通過(guò)技術(shù)革新后,加工一臺(tái)大型機(jī)械設(shè)備潤(rùn)滑用油量下降到 重復(fù)利用率仍為 60%,問(wèn)甲車(chē)間技術(shù)革新后, 加工一臺(tái)大型機(jī)械設(shè)備的實(shí)際耗油量是多少千乙車(chē)間通過(guò)技術(shù)革新后,不僅降低了潤(rùn)滑用油量,同時(shí)也提高了重復(fù)利用率,并且發(fā)現(xiàn)在技術(shù)革新前的基礎(chǔ)上,潤(rùn)滑用油量每減少 1 千克,用油的重復(fù)利用率將增加

23、%,這樣乙車(chē)間加工一臺(tái)大型機(jī)械設(shè)備的實(shí)際耗油量下降到12 千克。問(wèn)乙車(chē)間技術(shù)革新后,加工一臺(tái)大型機(jī)械設(shè)備的潤(rùn)滑用油量是多少千克用油的重復(fù)利用率是多少思維點(diǎn)擊 :(1)機(jī)械設(shè)備實(shí)際耗油量為用油量-重復(fù)使用的用油量; (2)若設(shè)技術(shù)革新后的乙車(chē)間加工一臺(tái)大型機(jī)械設(shè)備潤(rùn)滑用油量為X千克,則比技術(shù)革新前下降了 ( 90-X)千克,從而重復(fù)利用率增加了 (90 x) 1.6% ,這樣,就可以根據(jù)題意列出方程。解:(1)由題意,得 70 (1 60%) 70 40% 28 (千克)。2)設(shè)乙車(chē)間加工一臺(tái)大型機(jī)械設(shè)備潤(rùn)滑用油量為 X 千克,由題意,得 x 1 (90 X)1.6% 60%12,整理,得 X2 65X 7500,解得:X1 75, X210 (舍去),(90 75) 1.6% 60% 84%。28千克.75千克用油的重復(fù)利用率答:(1)技術(shù)革新后,甲車(chē)間加工一臺(tái)大型機(jī)械設(shè)備的實(shí)際耗油量是(2)技術(shù)革新后,乙車(chē)間加工一臺(tái)大型機(jī)械設(shè)備潤(rùn)滑用油量是是 84%.解后反思:本題考查了考生靈活利用一元二次方程解決實(shí)際問(wèn)題的能力。本節(jié)育見(jiàn)的恩維倶區(qū)是:(1審軀不認(rèn)S,誤解題方程后表険

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論