塑料模具畢業(yè)設(shè)計(jì)外文翻譯(附英文原文_第1頁
塑料模具畢業(yè)設(shè)計(jì)外文翻譯(附英文原文_第2頁
塑料模具畢業(yè)設(shè)計(jì)外文翻譯(附英文原文_第3頁
塑料模具畢業(yè)設(shè)計(jì)外文翻譯(附英文原文_第4頁
塑料模具畢業(yè)設(shè)計(jì)外文翻譯(附英文原文_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、畢業(yè)設(shè)計(jì)外文資料翻譯系 部: 機(jī)械工程系專 業(yè): 材料成型及控制工程姓 名: 學(xué) 號: 外 文 出 處: 附 件: 1.外文資料翻譯2.外文原文2012年03月05日一個描述電鑄鎳殼在注塑模具的應(yīng)用的技術(shù)研究 Universidad de Las Palmas de Gran Canaria, Departamento de Ingenieria Mecanica, Spain 摘要: 在過去幾年中快速成型技術(shù)及快速模具已被廣泛開發(fā)利用. 在本文中,使用電芯作為核心程序?qū)λ芰献⑸淠>叻治? 通過差分系統(tǒng)快速成型制造外殼模型. 主要目的是分析

2、電鑄鎳殼力學(xué)特征、 研究相關(guān)金相組織,硬度,內(nèi)部壓力等不同方面,由這些特征參數(shù)以生產(chǎn)電鑄設(shè)備的外殼. 最后一個核心是檢驗(yàn)注塑模具. 關(guān)鍵詞:電鍍;電鑄;微觀結(jié)構(gòu);鎳1. 引言 現(xiàn)代工業(yè)遇到很大的挑戰(zhàn),其中最重要的是怎么樣提供更好的產(chǎn)品給消費(fèi)者,更多種類和更新?lián)Q代問題. 因此,現(xiàn)代工業(yè)必定產(chǎn)生更多的競爭性. 毫無疑問,結(jié)合時(shí)間變量和質(zhì)量變量并不容易,因?yàn)樗麄兘?jīng)常彼此互為條件; 先進(jìn)的生產(chǎn)系統(tǒng)將允許該組合以更加有效可行的方式進(jìn)行,例如,如果是觀測注塑系統(tǒng)的轉(zhuǎn)變、 我們得出的結(jié)論是,事實(shí)上 一個新產(chǎn)品在市場上具有較好的質(zhì)量它需要越來越少的時(shí)間 快速模具制造技術(shù)是在這一領(lǐng)域, 中可以改善設(shè)計(jì)和制造注入

3、部分的技術(shù)進(jìn)步. 快速模具制造技術(shù)基本上是一個中小型系列的收集程序,在很短的時(shí)間內(nèi)在可接受的精度水平基礎(chǔ)上讓我們獲得模具的塑料部件。其應(yīng)用不僅在更加廣闊而且生產(chǎn)也不斷增多。 本文包括了很廣泛的研究路線,在這些研究路線中我們可以嘗試去學(xué)習(xí),定義,分析,測試,提出在工業(yè)水平方面的可行性,從核心的注塑模具制造獲取電鑄鎳殼,同時(shí)作為一個初始模型的原型在一個FDM設(shè)備上的快速成型。 不得不說的是,先進(jìn)的電鑄技術(shù)應(yīng)用在無數(shù)的行業(yè),但這一研究工作調(diào)查到什么程度,并根據(jù)這些參數(shù),使用這種技術(shù)生產(chǎn)快速模具在技術(shù)上是可行的. 都產(chǎn)生一個準(zhǔn)確的,系統(tǒng)化使用的方法以及建議的工作方法.2 制造過程的注塑模具薄鎳外殼的核

4、心是電鑄,獲得一個充滿epoxic金屬樹脂的一體化的核心板塊模具(圖1)允許直接制造注射型多用標(biāo)本,因?yàn)樗鼈兇_定了新英格蘭大學(xué)英文國際表卓華組織3167標(biāo)準(zhǔn)。這樣做的目的是確定力學(xué)性能的材料收集代表行業(yè)。該階段取得的核心4,根據(jù)這一方法研究了這項(xiàng)工作,有如下: a,用CAD系統(tǒng)設(shè)計(jì)的理想對象 b模型制造的快速成型設(shè)備(頻分多路系統(tǒng)). 所用材料將是一個ABS塑料c一個制造的電鑄鎳殼,已事先涂有導(dǎo)電涂料(必須有導(dǎo)電).d無外殼模型 e核心的生產(chǎn)是背面外殼環(huán)氧樹脂的抗高溫與具有制冷的銅管管道.有兩個腔的注塑模具、 其中一個是電核心和其他直接加工的移動版. 因此,在同一工藝條件下,同時(shí)注入兩個標(biāo)準(zhǔn)技

5、術(shù)制造,獲得相同的工作。3 獲得電殼:設(shè)備電鍍是電解質(zhì)時(shí)電流的化學(xué)變化,電解所形成的直流電有兩個電極,陽極和陰極。當(dāng)電流流經(jīng)電路,在離子溶液中轉(zhuǎn)化為原子。電鍍液用于這項(xiàng)工作是由氨基磺酸鎳400 毫升/升,氯化鎳(10克/升)、硼酸(50克/升),allbrite SLA(30毫升/升),allbrite703(2毫升/升). 選擇這種組合主要原因是我們考慮注塑模具程序是玻璃纖維. 氨基磺酸鎳讓我們獲得可以接受的內(nèi)部壓力(測試不同工藝條件結(jié)果,而不是最佳工藝條件約2兆帕最高為50兆帕). 不過,這種內(nèi)部壓力是由touenesulfonamode衍生物和甲醛水溶液使用的ALLbrite添加劑的結(jié)果

6、。這種添加劑也增加了殼的阻力. Allbrite703是一種可生物降解水溶液表使用劑 氯化鎳,有利于解決金屬統(tǒng)一分布在陰極,提高導(dǎo)電性的問題。硼酸作為PH值緩沖區(qū)。該設(shè)備用于制造殼的測試如下: 聚丙烯:600毫米400毫米500毫米的尺寸 三聚四氟乙烯電阻器,每一個有800W 具有機(jī)械攪拌系統(tǒng)的陰極循環(huán)和過濾系統(tǒng)用的泵和聚丙烯過濾器。 充電整流器. 最大強(qiáng)度在連續(xù)50個A和連續(xù)電流電壓介于0至16伏 籃鈦鎳陽極(鎳硫回合電解鎳)純度99%以上 氣體注入系統(tǒng)一旦電流密度( 1-22A/dm),溫度(35至55)和pH值,已經(jīng)確定,執(zhí)行參數(shù)以及測試的進(jìn)程部分不可改變。4 獲得硬度電殼硬度的測試一直

7、保持在相當(dāng)高的很穩(wěn)定的結(jié)果。如圖2,可以看到:電流密度值2.5到22A/dm,硬度值介于540到580高壓,PH值為4+-0.2和溫度為45攝氏度,如果PH減少到3.5和溫度為55攝氏度,硬度為520以上,高壓低于560.這一測試使常規(guī)組成不同于其他氨基磺酸鎳,允許其經(jīng)營更加廣泛,然而,這種operatyivity將是一定的取決于其他因素,如內(nèi)部壓力,因?yàn)樗赡艿淖儺?。改變PH值,電流密度和溫度等,另一方面,傳統(tǒng)的硬度氨基磺酸鎳承受的高壓在200-250之間,遠(yuǎn)低于取得的一個實(shí)驗(yàn)結(jié)果的電壓。對于一個注塑模具,硬度可以接受的起點(diǎn)300高壓這是必須考慮的,注塑模具中最常見的材料,有改善鋼(290高

8、壓),整體淬火(520-595高壓),casehardened鋼鐵(760-8-高壓)等,以這樣一種方式,可以看到,注塑模具硬度水平的鎳是殼內(nèi)的高范圍的材料。因?yàn)檫@是一個負(fù)責(zé)內(nèi)部壓力的塑料注射液,這種方式與環(huán)氧樹脂灌漿將遵循它,相反對低韌性的殼補(bǔ)償,這就是為什么它是必定盡可能的外殼厚度均勻,并沒有重要的原因,如 腐蝕。5 金相組織為了分析金相結(jié)構(gòu)、電流密度、溫度主要變化. 在正面橫向部分(垂直沉積)對樣品進(jìn)行了分析,為了方便地封裝在樹脂,拋光。銘刻,在不同階段的混合乙酸和硝酸。該時(shí)刻間隔15,25,40,50之后再次拋光, 為了在金相顯微鏡下觀察奧林巴斯PME3-ADL3.3X/10X 必須要

9、說的是,這一條規(guī)定顯示了圖片之后的評論,用于制造該模型的殼在FDM快速成型機(jī)里融化的塑料材料(澳大利亞統(tǒng)計(jì)局)鞏固和解決了該階層。后來在每一個層,擠出的模具都留下一個大約0.15毫米直徑橫向和縱向的線程。因此,在表面可以看到細(xì)線表面頭部的機(jī)器。這些西路將作為參考信息解決鎳的重復(fù)性問題。重復(fù)性的模型將作為一個基本要素來評估注塑模具的表面紋理。表1測試系列:表1. 檢驗(yàn)系列系列pH溫度()電流密度A/mm214.20.2552.2223.90.2455.5634.00.24510.0044.00.24522.22圖3說明該系列第一時(shí)刻表面的樣本 它顯示了流道起點(diǎn)的頻率復(fù)用機(jī),這就是說,又一個很好的

10、重復(fù)性。它不能仍然要注意四舍五入結(jié)構(gòu)。在圖4 系列2,經(jīng)過第二次,可以看到一條線的流道的方式與以前的相比不太清楚。在圖5系列3雖然第二次時(shí)刻開始出現(xiàn)圓形晶結(jié)果是非常困難的。此外,最黑暗的部分表明時(shí)刻不足的進(jìn)程和組成。這種現(xiàn)象表明,在低電流密度和高溫條件下工作,得到更小的晶粒尺寸和殼重現(xiàn)性好,就是所需要的足夠的應(yīng)用程序。如果分析橫向平面進(jìn)行的沉積,可以在所有測試樣品和條件增長的結(jié)構(gòu)層(圖6),犧牲一個低延展性取得令人滿意的高機(jī)械阻力,最重要的是添加劑的使用情況,氨基磺酸鎳液的添加劑通常創(chuàng)建一個纖維和非層狀結(jié)果9.這個問題表明在任何情況下改變潤濕劑,由于該層結(jié)構(gòu)的決定因素是這種結(jié)構(gòu)的應(yīng)力減速器(A

11、LLbriteSLA)。另一方面,她也是測試的層狀結(jié)構(gòu)不同厚度中的電流密度. 6 內(nèi)部壓力 殼的一個主要特點(diǎn)是應(yīng)該有其應(yīng)用,如插入時(shí)要有一個低水平的內(nèi)部壓力。測試不同的溫度很電流密度,所采取的措施取決于陰極彎曲張力計(jì)法。A鋼測試控制使用側(cè)固定和其他自由度固定(160毫米長,12.7毫米寬,0.3毫米厚)。金屬沉積只有在控制了機(jī)械拉伸力(拉深或壓應(yīng)力),才能計(jì)算內(nèi)部壓力。彈性的角度來看,斯托尼模型應(yīng)用,假定鎳基質(zhì)厚度,對部分鋼材產(chǎn)生足夠?。?微米)的影響。在所有測試情況下,一個能夠接受的應(yīng)用程序在內(nèi)部壓力在50兆帕的極端條件下和2兆帕的最佳條件下產(chǎn)生。得出的結(jié)論是,內(nèi)部壓力在不同的工作條件和參數(shù)

12、沒有明顯的變化條件下。7 校驗(yàn)注塑模具試驗(yàn)已進(jìn)行了各種代表性熱塑性材料如聚丙烯、高密度聚乙烯和PC、 并進(jìn)行了注射部件性能的分析,如尺寸,重量,阻力,剛度和柔性。對殼的力學(xué)性能進(jìn)行了拉伸破壞性測試和分析。大約500個注射液在其余的條件下,進(jìn)行了更多的檢驗(yàn)總體而言, 為分析一種材料,重要的是注意到行為標(biāo)本中的核心和那些加工腔之間的差異。然而在分析光彈注入標(biāo)本(圖7)有人注意到不同的國家之間張力存在兩種不同的類型的標(biāo)本,是由于不同的模腔熱傳遞和剛度。這種差異解釋了柔性的變化更加突出的部分晶體材料,如聚乙烯和聚酰胺6. 有人注意到一個較低的柔性標(biāo)本在的高密度聚乙烯分析測試管在鎳核心的情況下,量化30

13、%左右。如尼龍6這個值也接近50%。8 結(jié)論經(jīng)過連續(xù)的測試,注塑模具在不同條件下檢查的氨基磺酸鎳液使用添加劑。這就是說塑性好,硬度好和摩擦力好的層狀結(jié)構(gòu),已取得的力學(xué)性能是可以接受的。借鞋缺陷的鎳殼將部分取代環(huán)氧樹脂為核心的注塑模具,使注入的一系列中型塑料零部件達(dá)到可接受的質(zhì)量的水平。 參考資料1 A.E.W. Rennie, C.E. Bocking and G.R. Bennet, Electroforming of rapid prototyping mandrels for electro discharge machining electrodes, J. Mater. Proces

14、s. Technol. 110 (2001), pp. 186196. 2 P.K.D.V. Yarlagadda, I.P. Ilyas and P. Chrstodoulou, Development of rapid tooling for sheet metal drawing using nickel electroforming and stereo lithography processes, J. Mater. Process. Technol. 111 (2001), pp. 286294. 3 J. Hart, A. Watson, Electroforming: A la

15、rgely unrecognised but expanding vital industry, Interfinish 96, 14 World Congress, Birmingham, UK, 1996. 4 M. Monzn et al., Aplicacin del electroconformado en la fabricacin rpida de moldes de inyeccin, Revista de Plsticos Modernos. 84 (2002), p. 557. 5 L.F. Hamilton et al., Clculos de Qumica Analti

16、ca, McGraw Hill (1989). 6 E. Julve, Electrodeposicin de metales, 2000 (E.J.S.). 7 A. Watson, Nickel Sulphamate Solutions, Nickel Development Institute (1989). 8 A. Watson, Additions to Sulphamate Nickel Solutions, Nickel Development Institute (1989). 9 J. Dini, Electrodeposition Materials Science of

17、 Coating and Substrates, Noyes Publications (1993). 10 J.W. Judy, Magnetic microactuators with polysilicon flexures, Masters Report, Department of EECS, University of California, Berkeley, 1994. (cap. 3). A technical note on the characterization of electroformed nickel shells for their application t

18、o injection molds aUniversidad de Las Palmas de Gran Canaria, Departamento de Ingenieria Mecanica, Spain AbstractThe techniques of rapid prototyping and rapid tooling have been widely developed during the last years. In this article, electroforming as a procedure to make cores for plastics injection

19、 molds is analysed. Shells are obtained from models manufactured through rapid prototyping using the FDM system. The main objective is to analyze the mechanical features of electroformed nickel shells, studying different aspects related to their metallographic structure, hardness, internal stresses

20、and possible failures, by relating these features to the parameters of production of the shells with an electroforming equipment. Finally a core was tested in an injection mold. Keywords: Electroplating; Electroforming; Microstructure; Nickel 1. IntroductionOne of the most important challenges with

21、which modern industry comes across is to offer the consumer better products with outstanding variety and time variability (new designs). For this reason, modern industry must be more and more competitive and it has to produce with acceptable costs. There is no doubt that combining the time variable

22、and the quality variable is not easy because they frequently condition one another; the technological advances in the productive systems are going to permit that combination to be more efficient and feasible in a way that, for example, if it is observed the evolution of the systems and techniques of

23、 plastics injection, we arrive at the conclusion that, in fact, it takes less and less time to put a new product on the market and with higher levels of quality. The manufacturing technology of rapid tooling is, in this field, one of those technological advances that makes possible the improvements

24、in the processes of designing and manufacturing injected parts. Rapid tooling techniques are basically composed of a collection of procedures that are going to allow us to obtain a mold of plastic parts, in small or medium series, in a short period of time and with acceptable accuracy levels. Their

25、application is not only included in the field of making plastic injected pieces 1, 2 and 3, however, it is true that it is where they have developed more and where they find the highest output. This paper is included within a wider research line where it attempts to study, define, analyze, test and

26、propose, at an industrial level, the possibility of creating cores for injection molds starting from obtaining electroformed nickel shells, taking as an initial model a prototype made in a FDM rapid prototyping equipment. It also would have to say beforehand that the electroforming technique is not

27、something new because its applications in the industry are countless 3, but this research work has tried to investigate to what extent and under which parameters the use of this technique in the production of rapid molds is technically feasible. All made in an accurate and systematized way of use an

28、d proposing a working method. 2. Manufacturing process of an injection moldThe core is formed by a thin nickel shell that is obtained through the electroforming process, and that is filled with an epoxic resin with metallic charge during the integration in the core plate 4 This mold (Fig. 1) permits

29、 the direct manufacturing by injection of a type a multiple use specimen, as they are defined by the UNE-EN ISO 3167 standard. The purpose of this specimen is to determine the mechanical properties of a collection of materials representative industry, injected in these tools and its coMParison with

30、the properties obtained by conventional tools. Fig. 1.Manufactured injection mold with electroformed core.The stages to obtain a core 4, according to the methodology researched in this work, are the following: (a) Design in CAD system of the desired object.(b) Model manufacturing in a rapid prototyp

31、ing equipment (FDM system). The material used will be an ABS plastic.(c) Manufacturing of a nickel electroformed shell starting from the previous model that has been coated with a conductive paint beforehand (it must have electrical conductivity).(d) Removal of the shell from the model.(e) Productio

32、n of the core by filling the back of the shell with epoxy resin resistant to high temperatures and with the refrigerating ducts made with copper tubes.The injection mold had two cavities, one of them was the electroformed core and the other was directly machined in the moving platen. Thus, it was ob

33、tained, with the same tool and in the same process conditions, to inject simultaneously two specimens in cavities manufactured with different technologies. 3. Obtaining an electroformed shell: the equipmentElectrodeposition 5 and 6 is an electrochemical process in which a chemical change has its ori

34、gin within an electrolyte when passing an electric current through it. The electrolytic bath is formed by metal salts with two submerged electrodes, an anode (nickel) and a cathode (model), through which it is made to pass an intensity coming from a DC current. When the current flows through the cir

35、cuit, the metal ions present in the solution are transformed into atoms that are settled on the cathode creating a more or less uniform deposit layer. The plating bath used in this work is formed by nickel sulfamate 7 and 8 at a concentration of 400ml/l, nickel chloride (10g/l), boric acid (50g/l),

36、Allbrite SLA (30cc/l) and Allbrite 703 (2cc/l). The selection of this composition is mainly due to the type of application we intend, that is to say, injection molds, even when the injection is made with fibreglass. Nickel sulfamate allows us to obtain an acceptable level of internal stresses in the

37、 shell (the tests gave results, for different process conditions, not superior to 50MPa and for optimum conditions around 2MPa). Nevertheless, such level of internal pressure is also a consequence of using as an additive Allbrite SLA, which is a stress reducer constituted by derivatives of toluenesu

38、lfonamide and by formaldehyde in aqueous solution. Such additive also favours the increase of the resistance of the shell when permitting a smaller grain. Allbrite 703 is an aqueous solution of biodegradable surface-acting agents that has been utilized to reduce the risk of pitting. Nickel chloride,

39、 in spite of being harmful for the internal stresses, is added to enhance the conductivity of the solution and to favour the uniformity in the metallic distribution in the cathode. The boric acid acts as a pH buffer. The equipment used to manufacture the nickel shells tested has been as follows: Pol

40、ypropylene tank: 600mm400mm500mm in size. Three teflon resistors, each one with 800W. Mechanical stirring system of the cathode. System for recirculation and filtration of the bath formed by a pump and a polypropylene filter. Charging rectifier. Maximum intensity in continuous 50A and continuous cur

41、rent voltage between 0 and 16V. Titanium basket with nickel anodes (Inco S-Rounds Electrolytic Nickel) with a purity of 99%. Gases aspiration system.Once the bath has been defined, the operative parameters that have been altered for testing different conditions of the process have been the current d

42、ensity (between 1 and 22A/dm2), the temperature (between 35 and 55C) and the pH, partially modifying the bath composition. 4. Obtained hardnessOne of the most interesting conclusions obtained during the tests has been that the level of hardness of the different electroformed shells has remained at r

43、ather high and stable values. In Fig. 2, it can be observed the way in which for current density values between 2.5 and 22A/dm2, the hardness values range from 540 and 580HV, at pH 40.2 and with a temperature of 45C. If the pH of the bath is reduced at 3.5 and the temperature is 55C those values are

44、 above 520HV and below 560HV. This feature makes the tested bath different from other conventional ones composed by nickel sulfamate, allowing to operate with a wider range of values; nevertheless, such operativity will be limited depending on other factors, such as internal stress because its varia

45、bility may condition the work at certain values of pH, current density or temperature. On the other hand, the hardness of a conventional sulfamate bath is between 200250HV, much lower than the one obtained in the tests. It is necessary to take into account that, for an injection mold, the hardness i

46、s acceptable starting from 300HV. Among the most usual materials for injection molds it is possible to find steel for improvement (290HV), steel for integral hardening (520595HV), casehardened steel (760800HV), etc., in such a way that it can be observed that the hardness levels of the nickel shells

47、 would be within the mediumhigh range of the materials for injection molds. The objection to the low ductility of the shell is compensated in such a way with the epoxy resin filling that would follow it because this is the one responsible for holding inwardly the pressure charges of the processes of

48、 plastics injection; this is the reason why it is necessary for the shell to have a thickness as homogeneous as possible (above a minimum value) and with absence of important failures such as pitting. Fig. 2.Hardness variation with current density. pH 40.2, T=45C.5. Metallographic structureIn order

49、to analyze the metallographic structure, the values of current density and temperature were mainly modified. The samples were analyzed in frontal section and in transversal section (perpendicular to the deposition). For achieving a convenient preparation, they were conveniently encapsulated in resin

50、, polished and etched in different stages with a mixture of acetic acid and nitric acid. The etches are carried out at intervals of 15, 25, 40 and 50s, after being polished again, in order to be observed afterwards in a metallographic microscope Olympus PME3-ADL 3.3/10. Before going on to comment th

51、e photographs shown in this article, it is necessary to say that the models used to manufacture the shells were made in a FDM rapid prototyping machine where the molten plastic material (ABS), that later solidifies, is settled layer by layer. In each layer, the extruder die leaves a thread approxima

52、tely 0.15mm in diameter which is compacted horizontal and vertically with the thread settled inmediately after. Thus, in the surface it can be observed thin lines that indicate the roads followed by the head of the machine. These lines are going to act as a reference to indicate the reproducibility

53、level of the nickel settled. The reproducibility of the model is going to be a fundamental element to evaluate a basic aspect of injection molds: the surface texture. The tested series are indicated in Table 1. Table 1. Tested series Series pH Temperature (C) Current density (A/dm2) 14.20.2552.2223.

54、90.2455.5634.00.24510.0044.00.24522.22Fig. 3 illustrates the surface of a sample of the series after the first etch. It shows the roads originated by the FDM machine, that is to say that there is a good reproducibility. It cannot be still noticed the rounded grain structure. In Fig. 4, series 2, aft

55、er a second etch, it can be observed a line of the road in a way less clear than in the previous case. In Fig. 5, series 3 and 2 etch it begins to appear the rounded grain structure although it is very difficult to check the roads at this time. Besides, the most darkened areas indicate the presence

56、of pitting by inadequate conditions of process and bath composition. Fig. 3.Series 1 (150), etch 1.Fig. 4.Series 2 (300), etch 2.Fig. 5.Series 3 (300), etch 2.This behavior indicates that, working at a low current density and a high temperature, shells with a good reproducibility of the model and wi

57、th a small grain size are obtained, that is, adequate for the required application. If the analysis is carried out in a plane transversal to the deposition, it can be tested in all the samples and for all the conditions that the growth structure of the deposit is laminar (Fig. 6), what is very satisfactory to obtain a high mechanical resistance although at the expense of a low ductibility. This quality is due, above all, to the presence of the additives used because a nickel sulfamate bath without additives normally

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論