導(dǎo)數(shù)構(gòu)造新函數(shù)類型選擇題_第1頁
導(dǎo)數(shù)構(gòu)造新函數(shù)類型選擇題_第2頁
導(dǎo)數(shù)構(gòu)造新函數(shù)類型選擇題_第3頁
導(dǎo)數(shù)構(gòu)造新函數(shù)類型選擇題_第4頁
導(dǎo)數(shù)構(gòu)造新函數(shù)類型選擇題_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、構(gòu)造函數(shù)求解導(dǎo)數(shù) 【知識梳理】 關(guān)系式為“加”型 (1) f(x) f(x) 0 構(gòu)造exf(x) ex f (x)f(x) (2) xf (x) f(x) 0 構(gòu)造xf(x) xf (x) f (x) (3) xf (x) n f(x) 0 構(gòu)造xnf(x) xnf (x) nxn 1f (x) xn1xf(x) n f (x) (注意對x的符號進(jìn)行討論) 關(guān)系式為“減” 型 (1) f(x) f(x) 0 構(gòu)造f(x)- xx f (x)e f(x)ef (x) f (x) / x x2x e (e ) e (2) xf (x) f (x) 0 構(gòu)造f(x) xf (x) f (x) 2

2、x x (3) xf (x) n f(x) 0構(gòu)造上単 xnf (x) nxn 1 f (x) xf (x) nf (x) n 1 x (xn)2 x (注意對X的符號進(jìn)行討論) 【典型例題】 1、設(shè) f/ x A. C. f x , g x是定義在R上的奇函數(shù)和偶函數(shù),當(dāng) g x 3,0 ,3 f xg/ 3, 3, 2、已知f (x), g(x)都是定義在 0 ,貝U不等式f x g x 3,00,3 ,30,3 R上的函數(shù),并滿足以下條件: x 0時(shí), 0的解集是 且f(1) g(1) g(11)5則a ( ) 1 A 2 B、2 C. 5 4 D .2或1 1);(2) g(x) 0;

3、(3) f(x)g(x) f(x)g(x) (1) f (x) 2axg(x),(a 0,a f(x)是定義在非零實(shí)數(shù)集上的函數(shù), f(20.2) 2。.2, f (x)為其導(dǎo)函數(shù),且x 0時(shí), 2 血孕,c迪因,則 0.22log25 3、 xf (x) f (x)0 ,記 a (A)、c a b (B)b a c (C) a b c (D)c b a 4、已知定義域?yàn)镽的奇函數(shù)y f x的導(dǎo)函數(shù)為y f x卄111 f x0 ,右 a f , b 2 f 2 , c In x222 小關(guān)系正確的是 x,當(dāng)x 0時(shí), 1 In - ,貝U a,b,c 的大 2 A. a b c B. b c

4、 a C 、 a c b D. cab 5、已知函數(shù)f(x)對定義域R內(nèi)的任意x都有f(x) = f(4 x),且當(dāng)x 2時(shí)其導(dǎo) 函數(shù)f(X)滿足xf (x) 2f (x),若2 a 4則 A. f (2a)f(3) f (log2a) C、f(log2a) f(3)f(2a) B. f(3) f(log2a) f(2a) D. f (log 2 a) f(2a)f(3) 6設(shè)f (x)是定義在R上的奇函數(shù),且f (2)0,當(dāng)x 0時(shí),有xf (x) 2 f(x) 0恒 x 成立,則不等式x2f(x) 0的解集是() A. (- 2,0) U (2,+ %)B. (- 2,0) U (0,2)

5、 C. (- x,2) U (2,+ %)D (- x,2) U (0,2) 7、f (x)為f (x)的導(dǎo)函數(shù),若對x R, 2 f (x) xf (x) x2恒成立,貝U下列命題 可能錯誤的是() A. f(0)0B . f (1) 4f (2) C . f( 1) 4f( 2) D . 4f( 2) f (1) 8、若函數(shù)y= f (x)在R上可導(dǎo)且滿足不等式x f (x) f (x)恒成立,且常數(shù) a, b滿足 ab,求證:.a f (a) b f (b) 9、已知定義在R上的函數(shù)f (x)、g(x)滿足丄兇ax ,且 g(x) f (x)g(x)f(x)g(x),也 丄丄 5,若有窮

6、數(shù)列(n N*)的前 n g(1) g( 1)2g(n) 31 項(xiàng)和等于3-,則n等于. 32 10、已知定義域?yàn)镽的奇函數(shù)f (x)的導(dǎo)函數(shù)為f(x),當(dāng)x 0時(shí), f (x)111 f (x)0,若 a f(),b2f( 2), c ln - f (l n 2),則下列關(guān)于 x222 a,b,c的大小關(guān)系正確的是() Aa b c B.a c bC.c b a Db a c 11、 已知函數(shù)f(x)為定義在R上的可導(dǎo)函數(shù),且f(x) f(x)對于任意x R恒 ) f(0) f(0) f (x) 成立,e為自然對數(shù)的底數(shù),則( 2013 A.f (1) e f(0)、f (2013) e 2

7、013 C.f (1) e f(0)、f (2013) e 12、設(shè)函數(shù)f (x)在R上的導(dǎo)函數(shù)為 在R內(nèi)恒成立的是() A.f (x)0 B.f (x)0 C.f (x) x B.f(1) e f(0)、 D. f(1) e f(0)、 且 2f (x) xf (x) D.f(x) x 13 .定義在(0,)上的函數(shù)f (x),f (x)是它的導(dǎo)函數(shù),且恒有 2 立。則() A.,3f ( ) f() 63 C.6 f()2 * f () 64 14.定義在R上的函數(shù) f 3a 1 f 3 2013 f (2013) ef (0) 2013 f (2013) ef (0) x2,下面的不等式

8、 f (x) f (x) tanx 成 3 f( ) 2cos1 f(1) 6 .2f(4) f(3) ,滿足f 2 x ,則實(shí)數(shù)a的取值范圍是( 2 A. 15.已知 y f(x) 為R上的連續(xù)可導(dǎo)函數(shù),當(dāng) 時(shí) f (x) f(x) 0 , x 1 則函數(shù)g(x) f(x) x 的零點(diǎn)個數(shù)為( A. 1 16 .設(shè)函數(shù)f(x)在R上存在導(dǎo)數(shù)f (x), 上 f (x) x,若 f (4 m) f (m)8 2 f (x) x ,在(0,) ) R,有 f ( x) 4m,則實(shí)數(shù)m的取值范圍為( A. 2,2 2,) 0, )D . (, 2U2,) 17 .設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)

9、為 所示,則下列結(jié)論中一定成立的是( f (x),且函數(shù)y (1 x) f (x)的圖象如圖 ) 3 A. (,0) B . (0,) C . ( ,e4) D . (e4,) A. 函數(shù)f(x)有極大值f(2)和極小值f(1) B. 函數(shù)f(x)有極大值f(-2)和極小值f(1) C. 函數(shù)f (x)有極大值f (2)和極小值f( 2) D. 函數(shù)f (x)有極大值f( 2)和極小值f(2) 18已知定義在 R上的函數(shù)f (x)滿足f(2)1,且f(x)的導(dǎo)函數(shù)f (x) x 1,則不 1c 等式f (x) -x2 x 1的解集為() 2 A. x 2 x 2B x x 2C x x 2 D

10、 . x | x 2或 x 2 19 設(shè)f (x)和g (x)分別是f(x)和g(x)的導(dǎo)函數(shù),若f (x)g (x)0在區(qū)間I上恒 成立,則稱f (x)和g(x)在區(qū)間I上單調(diào)性相反,若函數(shù)f (x)丄X3 2ax與 3 2 g(x) x 2bx在開區(qū)間(a,b)上單調(diào)性相反(a 0),則b a的最大值為() 1 3 A.B . 1 C .D . 2 2 2 已知定義域?yàn)镽E 的奇函數(shù) y f (x)的導(dǎo)函數(shù)為y f (x),當(dāng) f x 0 時(shí), f(x) f(x) 0 , 卄1 右a 1 f( ),b 2f ( 2) , c (In 1) f (ln ,則a,b,c的 x 2 2 2 2

11、大小關(guān)系正確的是( ) A. a c b B. b c a C. a b c D. cab 21 .已知定義在 R上的可導(dǎo)函數(shù)f (x)的導(dǎo)函數(shù)為f (x),若對于任意實(shí)數(shù)x,有 f (x) f (x),且y f (x) 1為奇函數(shù),則不等式f (x) ex的解集為 2& 22.己知定義在 R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f (x),滿足f (x) f(x),且 f(x 2)為偶函數(shù), f(4) 1,則不等式 f(x) ex的解集為 A. (2,) B .(0, ) C. (1,) D .(4, ) 1 23.設(shè)點(diǎn)P在曲線上y Inx上,點(diǎn)Q在曲線y 1- ( x0)上,點(diǎn)R在直線y x x

12、上,則|PR| |RQ |的最小值為() A. B 24. 函數(shù)f(x)的定義域?yàn)镽, f( - 1) = 2,對任意x R, f(x) 2, 則f(x) 2x + 4的解集為() A. ( 1,1) B . ( 1,+x)C. ( x, 1) D . ( x,+x) 25. 已知函數(shù)y f (x)的圖象關(guān)于y軸對稱,且當(dāng)x (,0), f(x) xf (x) 0成立 a 20.2gf(20.2), b log 3gf (log 3) , c log3 9gf (log3 9),則 a,b,c 的大小 關(guān)系是() A. b a c B. c a b C. c b a D. a c b 26.

13、已知f (x)為R上的可導(dǎo)函數(shù),且x R,均有f(x) f (x),則有 A. 2013/ e f ( 2013) f(0), f (2013) 2013 e f(0) B. 2013/ e f ( 2013) f(0), f (2013) e2013f (0) C. 2013/ e f ( 2013) f (0), f (2013) 2013 e f(0) D. 2013/ e f ( 2013) f (0), f (2013) 2013 e f (0) 27. 已知函數(shù)f(x)(x R)滿足 f (1) 1 , 1 且f (x)的導(dǎo)函數(shù)f(x)-, 2 則 f(x) A. x 1 B. xx 1 C.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論