以空間圖形為背景的軌跡問題的探求_第1頁
以空間圖形為背景的軌跡問題的探求_第2頁
以空間圖形為背景的軌跡問題的探求_第3頁
以空間圖形為背景的軌跡問題的探求_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、以空間圖形為背景的軌跡問題的探求伴隨新課程的不斷深入,近幾年高考試題,設(shè)置了一些開放題,具有新穎性、綜合性.在知識(shí)網(wǎng)絡(luò)交匯處設(shè)計(jì)試題是當(dāng)今高考命題的一個(gè)方向,空間軌跡問題正是在這種背景下“閃亮登場(chǎng)”.這類題目已突破傳統(tǒng)的筐筐,涵蓋的知識(shí)點(diǎn)多,較抽象,學(xué)生求解起來頗感困難,得分率偏低,令人惋惜.本文通過幾道典型例題的分析,尋求空間軌跡問題的探求方法.1 分析動(dòng)點(diǎn)滿足的幾何性質(zhì);通過設(shè)軌跡上任意一點(diǎn),根據(jù)條件求出動(dòng)點(diǎn)的某些特征,再類比已學(xué)過的曲線的定義和性質(zhì),來尋求突破.1.1 利用線面垂直關(guān)系【例1】cda1bd1111111c1b1a1 正方體中,點(diǎn)p在側(cè)面及其邊界上運(yùn)動(dòng),在運(yùn)動(dòng)過程中,保持a

2、p,則動(dòng)點(diǎn)p的軌跡是( a ) a.線段 pb.線段c.中點(diǎn)與中點(diǎn)連成的線段d.中點(diǎn)與中點(diǎn)連成的線段解:聯(lián)想到線面垂直,轉(zhuǎn)化為求ap運(yùn)動(dòng)所形成的面與垂直,易證,故選a.1.2 聯(lián)想圓的定義 【例2】如圖所在的平面和四邊形所在的平面垂直,且, , ,則點(diǎn)在平面內(nèi)的軌跡是( a )a圓的一部分 b橢圓的一部分c雙曲線的一部分 d拋物線的一部分, 有在平面pab內(nèi),以ab所在直線為x軸,ab的中點(diǎn)為坐標(biāo)原點(diǎn),設(shè)p(x,y)則,化簡(jiǎn)得,注意到點(diǎn)p不在直線ab上,故除掉 選a.bcdac1b1a1d1p2p1pp3p6p4p5練習(xí):已知正方體的棱長(zhǎng)為1,在正方體的表面上與點(diǎn)a距離為的點(diǎn)的集合形成一條曲線

3、,則該曲線的長(zhǎng)度為( b ) a. b. c. d. 解:當(dāng)點(diǎn)p在上底面時(shí),連ap、a1p,在直角apa1中,求得pa1=,即弧p1p2的長(zhǎng).同理左側(cè)面的弧p5p6、后側(cè)面的弧p3p4的長(zhǎng)也為;當(dāng)點(diǎn)p在前側(cè)面時(shí),弧p1p6的半徑為,因?yàn)橹苯莂1p1a中,直角邊a1p1的長(zhǎng)為斜邊p1a的一半,所以弧p1p6的圓心角為,從而弧p1p6的長(zhǎng)為.同理右側(cè)面的弧p2p3的長(zhǎng)與下底面的弧p4p3的長(zhǎng)的長(zhǎng)也為.故曲線的總長(zhǎng)度為,故選b.1.3 聯(lián)想到拋物線的定義cdabd1c1b1a1efpm【例3】 已知正方體的棱長(zhǎng)為1,點(diǎn)m在棱ab上,且am=,點(diǎn)p是平面abcd內(nèi)的動(dòng)點(diǎn),且點(diǎn)p到直線的距離的平方與點(diǎn)p

4、到點(diǎn)m的距離的平方之差為1,則p點(diǎn)的軌跡為(a) a.拋物線弧 b.雙曲線弧 c.線段 d.以上都不對(duì)解法一:過p作pf垂直ad于f,則pf垂直平面add1a1,過點(diǎn)f作fe垂直a1d1于e,連pe,則pe為點(diǎn)p到直線a1d1的距離,由已知,即,得, pf=pm,故p點(diǎn)的軌跡是以m為焦點(diǎn),以ad為準(zhǔn)線的拋物線,故選a. 解法二:以ab,ad所在直線為x軸y軸建立直角坐標(biāo)系,設(shè)p(x ,y)為軌跡上任意點(diǎn),可得p到a1d1的距離平方為1+,=,所以1+-=1,整理得,故選a.c1d1a1b1dcbap練習(xí):在正方體的側(cè)面abb1a1內(nèi)有一點(diǎn)p到直線ab與到直線b1c1的距離相等,則動(dòng)點(diǎn)p所在曲線

5、的形狀為( c) a.直線 b.雙曲線 c.拋物線 d.圓解:因?yàn)閎1c1垂直于平面abb1a1,所以pb1為點(diǎn)p到直線b1c1的距離,于是問題轉(zhuǎn)化為在平面abb1a1內(nèi),點(diǎn)p到定點(diǎn)b1的距離與點(diǎn)p到定直線ab的距離相等.故根據(jù)拋物線的定義可知選答案c. 1.4 聯(lián)想到球面的定義【例4】 如圖,已知正方形的棱長(zhǎng)為2,長(zhǎng)為2的線段的一個(gè)端點(diǎn)在棱上運(yùn)動(dòng),點(diǎn)n在正方形內(nèi)運(yùn)動(dòng),則中點(diǎn)的軌跡的面積是( )a.b. c. d.解:充分利用mn的長(zhǎng)度不變,是直角三角形,p點(diǎn)為斜邊的中點(diǎn),.故點(diǎn)的軌跡是以為圓心,1為半徑的球面位于正方體內(nèi)的部分,因?yàn)橐憔唧w面積,就必須求出幾何體是球的哪些部分.分析可得,點(diǎn)p

6、和棱、均交于各自的中點(diǎn),即三條半徑兩兩垂直,該部分球面與正方體圍成的幾何體是球的八分之一,故選d.2 利用向量工具;按立體幾何的傳統(tǒng)方法幾乎無從下手時(shí),恰當(dāng)?shù)倪\(yùn)用向量,有踏破鐵鞋無覓處,得來全不費(fèi)工夫之感. 【例5】一定長(zhǎng)線段ab的兩個(gè)端點(diǎn)a、b沿互相垂直的兩條異面直線、運(yùn)動(dòng),求它的中點(diǎn)的軌跡.解:設(shè)mn為、的公垂線段,則mn與、兩兩垂直.如圖,以n點(diǎn)為原點(diǎn),直線為軸,直線nm為軸,以過點(diǎn)n所作直線的平行線為軸,建立空間直角坐標(biāo)系. 設(shè),則, p點(diǎn)坐標(biāo)為,其中橫坐標(biāo)和縱坐標(biāo)為變量,豎坐標(biāo)為常量.p點(diǎn)必在mn的垂直平分面上,取mn的中點(diǎn)o,則,所以p點(diǎn)在以o為圓心,為半徑的圓上.故p點(diǎn)的軌跡是mn的垂直平分面內(nèi)的一個(gè)圓.pmrqadbc3 利用特殊點(diǎn)定位;把問題的形式向特殊化形式轉(zhuǎn)化,得出結(jié)論,并證明特殊化后的結(jié)論適合一般情況.【例6】 如圖所示,在三棱錐a-bcd中,p為cd的中點(diǎn),動(dòng)點(diǎn)m在abd內(nèi)部及邊界上運(yùn)動(dòng),且總保持pm平面abc,求動(dòng)點(diǎn)m的軌跡.解:先分析特殊位置;當(dāng)點(diǎn)m在bd邊上時(shí),由pm平面abc可得pmbc,此時(shí)點(diǎn)m是bd邊的中點(diǎn)q,當(dāng)動(dòng)點(diǎn)m在ad邊上時(shí),同理可得pmac,此時(shí)點(diǎn)m是ad邊的中點(diǎn)r.于是猜想動(dòng)點(diǎn)m的軌跡為中位線rq.實(shí)際上此題就轉(zhuǎn)化為證明面,故命

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論