小學(xué)奧數(shù)7 4 2排列之捆綁法專項練習(xí)及答案解析_第1頁
小學(xué)奧數(shù)7 4 2排列之捆綁法專項練習(xí)及答案解析_第2頁
小學(xué)奧數(shù)7 4 2排列之捆綁法專項練習(xí)及答案解析_第3頁
小學(xué)奧數(shù)7 4 2排列之捆綁法專項練習(xí)及答案解析_第4頁
免費預(yù)覽已結(jié)束,剩余1頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、7-4-2.排列之捆綁法.題庫教師版Page of 4目歸教學(xué)目標1. 使學(xué)生正確理解排列的意義;2. 了解排列、排列數(shù)的意義,能根據(jù)具體的問題,寫出符合要求的排列;3. 掌握排列的計算公式;4. 會分析與數(shù)字有關(guān)的計數(shù)問題,以及與其他專題的綜合運用,培養(yǎng)學(xué)生的抽象能力和邏輯思維能力;通過本講的學(xué)習(xí),對排列的一些計數(shù)問題進行歸納總結(jié),并掌握一些排列技巧,如捆綁法等.知識要點一、排列問題在實際生活中經(jīng)常會遇到這樣的問題,就是要把一些事物排在一起,構(gòu)成一列,計算有多少種排法,就是排列問題.在排的過程中,不僅與參與排列的事物有關(guān),而且與各事物所在的先后順序有關(guān).一般地,從n個不同的元素中取出m(mn

2、)個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列.根據(jù)排列的定義,兩個排列相同,指的是兩個排列的元素完全相同, 并且元素的排列順序也相同.如果兩個排列中,元素不完全相同,它們是不同的排列;如果兩個排列中,雖然元素完全相同,但元素的 排列順序不同,它們也是不同的排列.排列的基本問題是計算排列的總個數(shù).從n個不同的元素中取出 m(mc3c2M,5X4X3X2X1,3x2x1種排法,然后再排三種類 型的順序,有3x2x1種排法,整個過程分 4步完成.4x3x2x1x5x4x3x2x1x3x2x1x3x2x1 =103680 種,一共有103680種不同排法.方法一:首先將

3、漫畫書和童話書全排列,分別有4c3x2c1=24、5c4x3c2x1 =120種排法,然后將本故事書一起全排列,一共有5x43咒2x1 =120種排法,所以漫畫書和童話書捆綁看成一摞,再和 一共有 24x120x120 =345600 種排法. 方法二:首先將三種書都全排列,分別有 整摞得先后插到故事書中,插漫畫書時有24 X120 X6 X5 X4 =345600 種排法. 【答案】10368024、120、6種排法,然后將排好了順序的漫畫書和童話書,4個地方可以插,插童話書時就有5個地方可插,所以一共有 345600【例6】四年級三班舉行六一兒童節(jié)聯(lián)歡活動.整個活動由 2個舞蹈、2個演唱和

4、3個小【解析】品組成.請問:如果要求同類型的節(jié)目連續(xù)演出,那么共有多少種不同的出場順序?【考點】排列之捆綁法【難度】2星【題型】解答“捆綁法”先對舞蹈、演唱、小品三種節(jié)目做全排因此出場順序總數(shù)為:要求同類型的節(jié)目連續(xù)演出,則可以應(yīng)用 列,再分別在各類節(jié)目內(nèi)部排列具體節(jié)目的次序.錯誤!未找到引用源。=144 (種).【答案】144【例7】【解析】停車站劃出一排12個停車位置,今有 一起,一共有多少種不同的停車方案?【考點】排列之捆綁法【難度】2星【題型】解答把4個空車位看成一個整體,與 8輛車一塊進行排列,這樣相當(dāng)于9個元素的全排列,所以共有 P9 =362880 .【答案】3628808輛不同

5、的車需要停放,若要求剩余的4個空車位連在【答案】3628800【例8】【解析】a,b,c,d, e五個人排成一排,a與b不相鄰,共有多少種不同的排法? 【考點】排列之捆綁法【難度】2星【題型】解答解法一:插空法,先排 c,d,e,有p;種排法.4個空,a , b排在這4個空的位置上,a與b就 P3P: =72 (種).a , b當(dāng)作一個人和其他三個人在一起排列,再考慮a與b本身的順序,有p:r2種P5 總的排法減去 a與b相鄰的排法即為 a與b不相鄰的排法,應(yīng)為 P5-RR=72在c,d,e三個人之間有2個空,再加上兩端,共有 不相鄰,有P2種排法.根據(jù)分步計數(shù)乘法原理,不同的排法共有 解法二:排除法,把 排法.總的排法為(種).【答案】72【鞏固】8人圍圓桌聚餐,【考點】排列之捆綁法甲、乙兩人必須相鄰,而乙、丙兩人不得相鄰,有幾種坐法? 【難度】3星【題型】解答【解析】n人的環(huán)狀排列與線狀排列的不同之處在于:aa2a|an、a2a|ana1、a3a|ana1a2、anaiH|an丄在線狀排列里是n個不同的排列,而在環(huán)狀排列中是相同的排列.所以,n個不同的元素的環(huán)狀排列數(shù)為邑=尺.n1人(當(dāng)然,他們之間還有順序)甲、乙兩人必須相鄰,可把他們看作是1人(當(dāng)然,他們之間還有順序),總排列數(shù)為p2p6 .從中扣除甲、乙相鄰且乙、丙也相鄰(注意,這和甲、乙、丙三人相鄰是不同的如甲在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論