




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、8-1 廣義積分的概念與計(jì)算第八章 反常積分-廣義積分 1 廣義積分的概念與計(jì)算廣義積分的概念與計(jì)算 2 廣義積分的收斂判別法廣義積分的收斂判別法 3 習(xí)題課習(xí)題課8-1 廣義積分的概念與計(jì)算 1、給出了反常積分的概念。給出了反常積分的概念。2、給出了反常積分的計(jì)算。給出了反常積分的計(jì)算。3、給出了反常積分的斂散性判別方法給出了反常積分的斂散性判別方法。教學(xué)內(nèi)容:教學(xué)內(nèi)容:教學(xué)重點(diǎn)教學(xué)重點(diǎn):反常積分的概念;反常積分的判斂方法。反常積分的概念;反常積分的判斂方法。要求要求:1、理解反常積分的概念。理解反常積分的概念。2、熟練掌握求反常積分的判斂方法,并會(huì)計(jì)算熟練掌握求反常積分的判斂方法,并會(huì)計(jì)算
2、反常積分。反常積分。本章內(nèi)容、要求及重點(diǎn)本章內(nèi)容、要求及重點(diǎn)8-1 廣義積分的概念與計(jì)算第一節(jié) 反常積分的概念與計(jì)算 1 無(wú)窮限的廣義(反常)積分無(wú)窮限的廣義(反常)積分 2 無(wú)界函數(shù)的廣義(反常)積分無(wú)界函數(shù)的廣義(反常)積分 3 小結(jié)小結(jié)8-1 廣義積分的概念與計(jì)算定定義義 1 1 設(shè)設(shè)函函數(shù)數(shù))(xf在在區(qū)區(qū)間間), a上上連連續(xù)續(xù),取取ab ,如如果果極極限限 babdxxf)(lim存存在在,則則稱稱此此極極限限為為函函數(shù)數(shù))(xf在在無(wú)無(wú)窮窮區(qū)區(qū)間間), a上上的的廣廣義義積積分分,記記作作 adxxf)(. . adxxf)( babdxxf)(lim當(dāng)當(dāng)極極限限存存在在時(shí)時(shí),稱
3、稱廣廣義義積積分分收收斂斂;當(dāng)當(dāng)極極限限不不存存在在時(shí)時(shí),稱稱廣廣義義積積分分發(fā)發(fā)散散. .一、無(wú)窮限的廣義積分一、無(wú)窮限的廣義積分8-1 廣義積分的概念與計(jì)算例例1 1 計(jì)算廣義積分計(jì)算廣義積分.12 xdx解解 21xdx 021xdx 021xdx 0211limaadxx bbdxx0211lim 0arctanlimaax bbx0arctanlim aaarctanlim bbarctanlim .22 8-1 廣義積分的概念與計(jì)算例例2 2 計(jì)算廣義積分計(jì)算廣義積分解解.1sin122 dxxx 21sin12dxxx 211sinxdx bbxdx211sinlimbbx 21
4、coslim 2cos1coslim bb. 1 8-1 廣義積分的概念與計(jì)算例例 3 3 證明廣義積分證明廣義積分 11dxxp當(dāng)當(dāng)1 p時(shí)收斂,時(shí)收斂,當(dāng)當(dāng)1 p時(shí)發(fā)散時(shí)發(fā)散.證證, 1)1( p 11dxxp 11dxx 1ln x, , 1)2( p 11dxxp 111pxp 1,111,ppp因此當(dāng)因此當(dāng)1 p時(shí)廣義積分收斂,其值為時(shí)廣義積分收斂,其值為11 p;當(dāng)當(dāng)1 p時(shí)廣義積分發(fā)散時(shí)廣義積分發(fā)散.8-1 廣義積分的概念與計(jì)算例例 4 4 證明廣義積分證明廣義積分 apxdxe當(dāng)當(dāng)0 p時(shí)收斂,時(shí)收斂,當(dāng)當(dāng)0 p時(shí)發(fā)散時(shí)發(fā)散.證證 apxdxe bapxbdxelimbapxb
5、pe lim pepepbpablim 0,0,pppeap即即當(dāng)當(dāng)0 p時(shí)時(shí)收收斂斂,當(dāng)當(dāng)0 p時(shí)時(shí)發(fā)發(fā)散散.8-1 廣義積分的概念與計(jì)算定義定義 2 2 設(shè)函數(shù)設(shè)函數(shù))(xf在區(qū)間在區(qū)間,(ba上連續(xù),而在上連續(xù),而在點(diǎn)點(diǎn)a的右鄰域內(nèi)無(wú)界取的右鄰域內(nèi)無(wú)界取0 ,如果極限,如果極限 badxxf )(lim0存在,則稱此極限為函數(shù)存在,則稱此極限為函數(shù))(xf在區(qū)間在區(qū)間,(ba上的廣義積分,記作上的廣義積分,記作 badxxf)(. . badxxf)( badxxf )(lim0當(dāng)當(dāng)極極限限存存在在時(shí)時(shí),稱稱廣廣義義積積分分收收斂斂;當(dāng)當(dāng)極極限限不不存存在在時(shí)時(shí),稱稱廣廣義義積積分分發(fā)發(fā)
6、散散. .二、無(wú)界函數(shù)的廣義積分二、無(wú)界函數(shù)的廣義積分8-1 廣義積分的概念與計(jì)算設(shè)函數(shù)設(shè)函數(shù))(xf在區(qū)間在區(qū)間,ba上除點(diǎn)上除點(diǎn))(bcac 外連外連續(xù),而在點(diǎn)續(xù),而在點(diǎn)c的鄰域內(nèi)無(wú)界的鄰域內(nèi)無(wú)界. .如果兩個(gè)廣義積分如果兩個(gè)廣義積分 cadxxf)(和和 bcdxxf)(都收斂,則定義都收斂,則定義 badxxf)( cadxxf)( bcdxxf)( cadxxf)(lim0 bcdxxf )(lim0否否則則,就就稱稱廣廣義義積積分分 badxxf)(發(fā)發(fā)散散. .定義中定義中c為為瑕點(diǎn)瑕點(diǎn),以上積分稱為,以上積分稱為瑕積分瑕積分.8-1 廣義積分的概念與計(jì)算例例5 5 計(jì)算廣義積分
7、計(jì)算廣義積分解解).0(022 axadxa,1lim220 xaaxax 為為被被積積函函數(shù)數(shù)的的無(wú)無(wú)窮窮間間斷斷點(diǎn)點(diǎn). axadx022 axadx0220lim aax00arcsinlim 0arcsinlim0aa .2 8-1 廣義積分的概念與計(jì)算例例 6 6 證明廣義積分證明廣義積分 101dxxq當(dāng)當(dāng)1 q時(shí)收斂,當(dāng)時(shí)收斂,當(dāng)1 q時(shí)發(fā)散時(shí)發(fā)散.證證, 1)1( q 101dxx 10ln x , , 1)2( q 101dxxq1011 qxq 1,111,qqq因此當(dāng)因此當(dāng)1 q時(shí)廣義積分收斂,其值為時(shí)廣義積分收斂,其值為q 11;當(dāng)當(dāng)1 q時(shí)廣義積分發(fā)散時(shí)廣義積分發(fā)散.
8、101dxxq8-1 廣義積分的概念與計(jì)算例例7 7 計(jì)算廣義積分計(jì)算廣義積分解解.ln21 xxdx 21ln xxdx 210lnlim xxdx 210ln)(lnlim xxd 210)ln(lnlim x )1ln(ln()2ln(lnlim0 . 故原廣義積分發(fā)散故原廣義積分發(fā)散.8-1 廣義積分的概念與計(jì)算例例8 8 計(jì)算廣義積分計(jì)算廣義積分解解.)1(3032 xdx1 x瑕點(diǎn)瑕點(diǎn) 3032)1(xdx 103132)1()(xdx 1032)1(xdx 10032)1(limxdx3 3132)1(xdx 31032)1(lim xdx, 233 3032)1(xdx).21
9、(33 8-1 廣義積分的概念與計(jì)算無(wú)界函數(shù)的廣義積分(無(wú)界函數(shù)的廣義積分(瑕積分瑕積分)無(wú)窮限的廣義積分無(wú)窮限的廣義積分 dxxf)( bdxxf)( adxxf)( cabcbadxxfdxxfdxxf)()()((注意注意:不能忽略內(nèi)部的瑕點(diǎn)):不能忽略內(nèi)部的瑕點(diǎn)) badxxf)(三、小結(jié)三、小結(jié) 作業(yè):作業(yè):p368 2 ;3(3)(6)(8);4(1)(2)(5); 6(1)(4);12. 8-1 廣義積分的概念與計(jì)算思考題思考題積分積分 的瑕點(diǎn)是哪幾點(diǎn)?的瑕點(diǎn)是哪幾點(diǎn)? 101lndxxx8-1 廣義積分的概念與計(jì)算思考題解答思考題解答積分積分 可能的瑕點(diǎn)是可能的瑕點(diǎn)是 101l
10、ndxxx1, 0 xx1lnlim1 xxx, 11lim1 xx1 x不是瑕點(diǎn)不是瑕點(diǎn), 101lndxxx的瑕點(diǎn)是的瑕點(diǎn)是. 0 x8-1 廣義積分的概念與計(jì)算一、一、 填空題:填空題:1 1、 廣義積分廣義積分 1pxdx當(dāng)當(dāng)_時(shí)收斂;當(dāng)時(shí)收斂;當(dāng)_時(shí)時(shí)發(fā)散;發(fā)散;2 2、 廣義積分廣義積分 10qxdx當(dāng)當(dāng)_時(shí)收斂;當(dāng)時(shí)收斂;當(dāng)_時(shí)發(fā)時(shí)發(fā)散;散;3 3、 廣義積分廣義積分 2)(lnkxxdx在在_時(shí)收斂; 在時(shí)收斂; 在_ 時(shí)發(fā)散;時(shí)發(fā)散; 4 4、廣義積分、廣義積分 dxxx21=_=_;練練 習(xí)習(xí) 題題8-1 廣義積分的概念與計(jì)算一、一、1 1、1, 1 pp;2 2、1,1 qq; 3 3、1,1 kk;4 4、發(fā)散;、發(fā)散; 5 5、1 1; 6 6、過(guò)點(diǎn)、過(guò)點(diǎn)軸軸平平行行于于 yx的直的直線左邊線左邊, ,曲線曲線)(xfy 軸軸和和 x所圍圖形的面積所圍圖形的面積
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CFDCC 0216-2023家具(材料)表面抗菌防霉性能評(píng)價(jià)方法
- T/CECS 10355-2024鐵路工程混凝土用火成巖石粉
- T/CECS 10331-2023無(wú)機(jī)鎂質(zhì)發(fā)泡金屬板
- T/CECS 10240-2022綠色建材評(píng)價(jià)組合式空調(diào)機(jī)組
- T/CEC 735-2023 T/CHINABICYCLE 18-2023電動(dòng)自行車集中充電設(shè)施運(yùn)營(yíng)管理服務(wù)規(guī)范
- T/CCPITCSC 116-2022家庭教育指導(dǎo)師能力要求
- T/CCOA 36-2020糧油倉(cāng)儲(chǔ)企業(yè)防火安全檢查要求
- T/CCMA 0067-2018瀝青混合料攪拌設(shè)備安全標(biāo)識(shí)
- T/CCBD 10-2020品牌評(píng)價(jià)室內(nèi)環(huán)境污染治理企業(yè)
- T/CBJ 1107-2024酒類企業(yè)ESG評(píng)價(jià)指南
- 《井工煤礦職業(yè)病防治》培訓(xùn)課件2025
- uni-app移動(dòng)應(yīng)用開(kāi)發(fā)課件 7-智慧環(huán)保項(xiàng)目
- 2025年事業(yè)單位考試(綜合管理類A類)職業(yè)能力傾向測(cè)驗(yàn)試題及解答參考
- 2025年中考物理總復(fù)習(xí)《壓強(qiáng)》專項(xiàng)測(cè)試卷含答案
- 音樂(lè)可視化藝術(shù)-洞察分析
- 心肌三項(xiàng)臨床意義
- 2024“五史”全文課件
- 湖南《超高性能混凝土集成模塊建筑技術(shù)標(biāo)準(zhǔn)》
- GB/T 45089-20240~3歲嬰幼兒居家照護(hù)服務(wù)規(guī)范
- 工程材料表征技術(shù)知到智慧樹(shù)章節(jié)測(cè)試課后答案2024年秋湖南工學(xué)院
- 萃智創(chuàng)新方法理論考試題庫(kù)(含答案)
評(píng)論
0/150
提交評(píng)論