初中數(shù)學知識點總結_第1頁
初中數(shù)學知識點總結_第2頁
初中數(shù)學知識點總結_第3頁
初中數(shù)學知識點總結_第4頁
初中數(shù)學知識點總結_第5頁
已閱讀5頁,還剩45頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、初一數(shù)學上冊知識點匯總正正、負負數(shù)數(shù)的的概概念念我們把像3、2、+0.5、0.03%這樣的數(shù)叫做正數(shù)它們都是比0小的數(shù)。0既不是正數(shù)也不是負數(shù)。我們可以用正數(shù)與負數(shù)表示具有相反意義的量。有有理理數(shù)數(shù)的的知知識識點點整數(shù)和分數(shù)統(tǒng)稱有理數(shù)注:有限小數(shù)和無限循環(huán)小數(shù)都可看作分數(shù)數(shù)軸的概念:像下面這樣規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸絕對值的概念:幾何意義:數(shù)軸上表示a的點與原點的距離叫做數(shù)a的絕對值,記作|a|代數(shù)意義:一個正數(shù)的絕對值是它的本身;一個負數(shù)的絕對值是它的相反數(shù);零的絕對值是零注:任何一個數(shù)的絕對值均大于或等于0(即非負數(shù))相反數(shù)的概念:幾何意義:在數(shù)軸上分別位于原點的兩旁,到

2、原點的距離相等的兩個點所表示的數(shù),叫做互為相反數(shù)代數(shù)意義:符號不同但絕對值相等的兩個數(shù)叫做互為相反數(shù)。0的相反數(shù)是0有理數(shù)大小的比較: 有理數(shù)大小比較的基本法則:正數(shù)都大于零,負數(shù)都小于零,正數(shù)大于負數(shù)數(shù)軸上有理數(shù)大小的比較:在數(shù)軸上表示的兩個數(shù),右邊的數(shù)總比左邊的大用絕對值進行有理數(shù)大小的比較:兩個正數(shù),絕對值大的正數(shù)大;兩個負數(shù),絕對值大的負數(shù)反而小有理數(shù)加法法則:同號兩數(shù)相加,取相同的符號,并把絕對值相加;取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;有理數(shù)加法運算律: 加法交換律:兩個數(shù)相加,交換加數(shù)的位置,和不變加法結合律:三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)

3、相加,和不變有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)有理數(shù)加減混合運算: 根據(jù)有理數(shù)減法的法則,一切加法和減法的運算,都可以統(tǒng)一成加法運算,然后省略括號和加號,并運用加法法則、加法運算律進行計算代代數(shù)數(shù)初初步步知知識識代數(shù)式:用運算符號 連接數(shù)及表示數(shù)的字母的式子稱為代數(shù)式(字母所取得數(shù)應保證它所在的式子有意義,其次字母所取得數(shù)還應使實際生活或生產(chǎn)有意義;單獨一個數(shù)或一個字母也是代數(shù)式)注意事項:數(shù)與字母相乘,或字母與字母相乘通常使用 乘,或省略不寫;數(shù)與數(shù)相乘,仍應使用乘,不用 乘,也不能省略乘號;數(shù)與字母相乘時,一般在結果中把數(shù)寫在字母前面,如a5應寫成5a;帶分數(shù)與字母相乘時,

4、要把帶分數(shù)改成假分數(shù)形式,如a 應寫成 a;在代數(shù)式中出現(xiàn)除法運算時,一般用分數(shù)線將被除式和除式聯(lián)系,如3a寫成 的形式;a與b的差寫作a-b,要注意字母順序;若只說兩數(shù)的差,當分別設兩數(shù)為a、b時,則應分類,寫做a-b和b-a重要的代數(shù)式:a與b的平方差是: a2-b2 ; a與b差的平方是:(a-b)2 ;(m、n表示整數(shù))若a、b、c是正整數(shù),則兩位整數(shù)是: 10a+b ,則三位整數(shù)是:100a+10b+c;若m、n是整數(shù),則被5除商m余n的數(shù)是: 5m+n ;偶數(shù)是:2n ,奇數(shù)是:2n+1;三個連續(xù)整數(shù)是: n-1、n、n+1 ;若b0,則正數(shù)是:a2+b ,負數(shù)是: -a2-b ,

5、非負數(shù)是: a2 ,非正數(shù)是:-a2整整式式的的加加減減單項式:在代數(shù)式中,若只含有乘法(包括乘方)運算?;螂m含有除法運算,但除式中不含字母的一類代數(shù)式叫單項式單項式的系數(shù)與次數(shù): 單項式中不為零的數(shù)字因數(shù),叫單項式的數(shù)字系數(shù),簡稱單項式的系數(shù);系數(shù)不為零時,單項式中所有字母指數(shù)的和,叫單項式的次數(shù)多項式:幾個單項式的和叫多項式多項式的項數(shù)與次數(shù): 多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù)注意:(若a、b、c、p、q是常數(shù))ax2+bx+c和x2+px+q是常見的兩個二次三項式整式:凡不含有除法運算,或雖含有除法運算但除式中不含

6、字母的代數(shù)式叫整式整式分類為:同類項:所含字母相同,并且相同字母的指數(shù)也相同的單項式是同類項合并同類項法則:系數(shù)相加,字母與字母的指數(shù)不變?nèi)ィㄌ恚├ㄌ柗▌t:去(添)括號時,若括號前邊是+號,括號里的各項都不變號;若括號前邊是-號,括號里的各項都要變號整式的加減:整式的加減,實際上是在去括號的基礎上,把多項式的同類項合并升冪和降冪排列:把一個多項式的各項按某個字母的指數(shù)從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列)注意:多項式計算的最后結果一般應該進行升冪(或降冪)排列一一元元一一次次方方程程等式與等量:用=號連接而成的式子叫等式.注意:等量就能代入等式的性質(zhì):等式性質(zhì)1

7、: 等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結果仍是等式等式性質(zhì)2 等式兩邊都乘以(或除以)同一個不為零的數(shù),所得結果仍是等式方程:含未知數(shù)的等式,叫方程方程的解:使等式左右兩邊相等的未知數(shù)的值叫方程的解;注意:方程的解就能代入移項:改變符號后,把方程的項從一邊移到另一邊叫移項.移項的依據(jù)是等式性質(zhì)1一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程一元一次方程標準式: ax+b=0(x是未知數(shù),a、b是已知數(shù),且a0)一元一次方程最簡式: ax=b(x是未知數(shù),a、b是已知數(shù),且a0)一元一次方程解步驟: 整理方程 去分母 去括

8、號 移項 合并同類項 系數(shù)化為1 (檢驗方程的解)一元一次方程應用題: 讀題分析法: 多用于和,差,倍,分問題仔細讀題,找出表示相等關系的關鍵字,例如:大,小,多,少,是,共,合,為,完成,增加,減少,配套-,利用這些關鍵字列出文字等式,并且據(jù)題意設出未知數(shù),最后利用題目中的量與量的關系填入代數(shù)式,得到方程畫圖分析法: 多用于行程問題利用圖形分析數(shù)學問題是數(shù)形結合思想在數(shù)學中的體現(xiàn),仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關系(可把未知數(shù)看做已知量),填入有關的代數(shù)式是獲得方程的基礎方程應用題常

9、用公式: 行程問題: 距離=速度時間 工程問題: 工作量=工效工時比率問題: 部分=全體比率順逆流問題: 順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度商品價格問題: 售價=定價折 ,利潤=售價-成本周長、面積、體積問題:C圓=2R,S圓=R2,C長方形=2(a+b),S長方形=ab, C正方形=4aS正方形=a2,S環(huán)形=(R2-r2),V長方體=abc ,V正方體=a3,V圓柱=R2h ,V圓錐= R2h.初一數(shù)學下冊知識點匯總相相交交線線與與平平行行線線相交線:有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角兩條直線相交有4對鄰補角有公共的頂點

10、,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角兩條直線相交,有2對對頂角對頂角相等相交線性質(zhì):兩條直線相交,所成的四個角中有一個角是直角,那么這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足注意:垂線是一條直線具有垂直關系的兩條直線所成的4個角都是90垂直是相交的特殊情況垂直的記法:ab,ABCD畫已知直線的垂線有無數(shù)條過一點有且只有一條直線與已知直線垂直連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短直線外一點到這條直線的垂線段的長度,叫做點到直線的距離平行線:在同一平面內(nèi),兩條直線沒有交點,則這兩條直線互相平行,記作:ab在同一平面內(nèi)兩條直

11、線的關系只有兩種:相交或平行平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行直線平行的條件:兩條直線被第三條直線所截,在兩條被截線的同一方,截線的同一旁,這樣的兩個角叫做同位角兩條直線被第三條直線所截,在兩條被截線之間,截線的兩側(cè),這樣的兩個角叫做內(nèi)錯角兩條直線被第三條直線所截,在兩條被截線之間,截線的同一旁,這樣的兩個角叫做同旁內(nèi)角判定兩直線平行方法: 方法1兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行。簡單說成:同位角相等,兩直線平行方法2兩條直線被第三條直線所截,如果內(nèi)錯角相等,那么這兩條直線平行。簡單說成:

12、內(nèi)錯角相等,兩直線平行方法3兩條直線被第三條直線所截,如果同旁內(nèi)角互補,那么這兩條直線平行。簡單說成:同旁內(nèi)角互補,兩直線平行平行線的性質(zhì):性質(zhì)1兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等性質(zhì)2兩條平行線被第三條直線所截,內(nèi)錯角相等。簡單說成:兩直線平行,內(nèi)錯角相等性質(zhì)3兩條平行線被第三條直線所截,同旁內(nèi)角互補。簡單說成:兩直線平行,同旁內(nèi)角互補同時垂直于兩條平行線,并且夾在這兩條平行線間的線段的長度,叫做著兩條平行線的距離平移:把一個圖形整體沿某一方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同新圖形中的每一點,都是由原圖形中的某一點移動后得到的

13、,這兩個點是對應點,連接各組對應點的線段平行且相等圖形的這種移動,叫做平移變換,簡稱平移平平面面直直角角坐坐標標系系有序數(shù)對:有順序的兩個數(shù)a與b組成的數(shù)對,叫做有序數(shù)對平面直角坐標系:平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。水平的數(shù)軸稱為x軸或橫軸,習慣上取向右為正方向;豎直的數(shù)軸稱為y軸或縱軸取2向上方向為正方向;兩坐標軸的交點為平面直角坐標系的原點平面上的任意一點都可以用一個有序數(shù)對來表示建立了平面直角坐標系以后,坐標平面就被兩條坐標軸分為了、四個部分,分別叫做第一象限、第二象限、第三象限和第四象限。坐標軸上的點不屬于任何象限用坐標表示地理位置: 利用平面直角坐標系繪制

14、區(qū)域內(nèi)一些地點分布情況平面圖的過程如下:建立坐標系,選擇一個適當?shù)膮⒄拯c為原點,確定x軸、y軸的正方向;根據(jù)具體問題確定適當?shù)谋壤?,在坐標軸上標出單位長度;在坐標平面內(nèi)畫出這些點,寫出各點的坐標和各個地點的名稱用坐標表示平移:在平面直角坐標系中,將點(x,y)向右(或左)平移a個單位長度,可以得到對應點(xa,y)(或(xa,y);將點(x,y)向上(或下)平移b個單位長度,可以得到對應點(x,yb)(或(x,yb)在平面直角坐標系內(nèi),如果把一個圖形各個點的橫坐標都加(或減去)一個正數(shù)a,相應的新圖形就是把原圖形向右(或向左)平移a個單位長度如果把它各個點的縱坐標都加(或減去)一個正數(shù)a,相

15、應的新圖形就是把原圖形向上(或向下)平移a個單位長度三三角角形形三角形的邊:由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形。相鄰兩邊組成的角,叫做三角形的內(nèi)角,簡稱三角形的角頂點是A、B、C的三角形,記作“ABC”,讀作“三角形ABC”三角形兩邊的和大于第三邊三角形的高、中線和角平分線三角形的穩(wěn)定性:三角形具有穩(wěn)定性三角形的內(nèi)角:三角形的內(nèi)角和等于180三角形的外角:三角形的一邊與另一邊的延長線組成的角,叫做三角形的外角三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和三角形的一個外角大于與它不相鄰的任何一個內(nèi)角多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形連接多邊形不

16、相鄰的兩個頂點的線段,叫做多邊形的對角線n邊形的對角線公式:各個角都相等,各條邊都相等的多邊形叫做正多邊形多邊形的內(nèi)角和:n邊形的內(nèi)角和公式:180(n2)多邊形的外角和等于360二二元元一一次次方方程程組組二元一次方程組:含有兩個未知數(shù),并且未知數(shù)的指數(shù)都是1的方程叫做二元一次方程把具有相同未知數(shù)的兩個二元一次方程合在一起,就組成了一個二元一次方程組使二元一次方程兩邊的值相等的兩個未知數(shù)的值,叫做二元一次方程的解二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解消元:由二元一次方程組中的一個方程,將一個未知數(shù)用含有另一未知數(shù)的式子表示出來,再代入另一方程,實現(xiàn)消元進而求得這個二元一次方

17、程組的解。這種方法叫做代入消元法,簡稱代入法兩個二元一次方程中同一未知數(shù)的系數(shù)相反或相等時,將兩個方程的兩邊分別相加或相減,就能消去這個未知數(shù),得到一個一元一次方程這種方法叫做加減消元法,簡稱加減法不不等等式式與與不不等等式式組組不等式及其解集:用“”或“”號表示大小關系的式子叫做不等式使不等式成立的未知數(shù)的值叫做不等式的解能使不等式成立的未知數(shù)的取值范圍,叫做不等式解的集合,簡稱解集含有一個未知數(shù),未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式不等式的性質(zhì):不等式的性質(zhì)1不等式兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變不等式的性質(zhì)2不等式兩邊乘(或除以)同一個正數(shù),不等號的方向不變不等

18、式的性質(zhì)3不等式兩邊乘(或除以)同一個負數(shù),不等號的方向改變一一元元一一次次不不等等式式不等式方程組:把兩個不等式合起來,就組成了一個一元一次不等式組幾個不等式的解集的公共部分,叫做由它們所組成的不等式的解集。解不等式就是求它的解集對于具有多種不等關系的問題,可通過不等式組解決。解一元一次不等式組時。一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數(shù)軸可以直觀地表示不等式組的解集。實際問題:解一元一次方程,要根據(jù)等式的性質(zhì),將方程逐步化為xa的形式;而解一元一次不等式,則要根據(jù)不等式的性質(zhì),將不等式逐步化為xa(或xa)的形式數(shù)數(shù)據(jù)據(jù)的的收收集集、整整理理與與描描述述1、對數(shù)據(jù)進行

19、處理的一般過程:收集數(shù)據(jù)、整理數(shù)據(jù)、描述數(shù)據(jù)、分析得出結論2、數(shù)據(jù)收集過程中,調(diào)查的方法通常有兩種:全面調(diào)查和抽樣調(diào)查3、除了文字敘述、列表、劃記法外,還可以用條形圖、折線圖、扇形圖、直方圖來描述數(shù)據(jù)4、抽樣調(diào)查簡稱抽查,它只抽取一部分對象進行調(diào)查,根據(jù)調(diào)查數(shù)據(jù)推斷全體對象的情況。要考察的全體對象叫總體,組成總體的每一個考察對象叫個體,被抽取的那部分個體組成總體的一個樣本樣本中個體的數(shù)目叫這個樣本的容量5、畫頻數(shù)直方圖的步驟:計算數(shù)差(最大值與最小值的差);確定組距和組數(shù);列頻數(shù)分布表;畫頻數(shù)直方圖它們都是比0大的數(shù);像-3、-2、-0.5、 -0.03%這樣數(shù)叫做負數(shù)異號兩數(shù)相加,絕對值相等

20、時,和為0;絕對值不等時,一個數(shù)與0相加,仍得這個數(shù)初一數(shù)學上冊知識點匯總它們都是比0小的數(shù)。0既不是正數(shù)也不是負數(shù)。我們可以用正數(shù)與負數(shù)表示具有相反意義的量。注:有限小數(shù)和無限循環(huán)小數(shù)都可看作分數(shù)數(shù)軸的概念:像下面這樣規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸幾何意義:數(shù)軸上表示a的點與原點的距離叫做數(shù)a的絕對值,記作|a|代數(shù)意義:一個正數(shù)的絕對值是它的本身;一個負數(shù)的絕對值是它的相反數(shù);零的絕對值是零幾何意義:在數(shù)軸上分別位于原點的兩旁,到原點的距離相等的兩個點所表示的數(shù),叫做互為相反數(shù)代數(shù)意義:符號不同但絕對值相等的兩個數(shù)叫做互為相反數(shù)。0的相反數(shù)是0有理數(shù)大小比較的基本法則:正數(shù)都大

21、于零,負數(shù)都小于零,正數(shù)大于負數(shù)數(shù)軸上有理數(shù)大小的比較:在數(shù)軸上表示的兩個數(shù),右邊的數(shù)總比左邊的大用絕對值進行有理數(shù)大小的比較:兩個正數(shù),絕對值大的正數(shù)大;兩個負數(shù),絕對值大的負數(shù)反而小同號兩數(shù)相加,取相同的符號,并把絕對值相加;取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;加法交換律:兩個數(shù)相加,交換加數(shù)的位置,和不變加法結合律:三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變減去一個數(shù),等于加上這個數(shù)的相反數(shù)根據(jù)有理數(shù)減法的法則,一切加法和減法的運算,都可以統(tǒng)一成加法運算,然后省略括號和加號,并運用加法法則、加法運算律進行計算用運算符號 連接數(shù)及表示數(shù)的字母的式子稱

22、為代數(shù)式(字母所取得數(shù)應保證它所在的式子有意義,其次字母所取得數(shù)還應使實際生活或生產(chǎn)有意義;單獨一個數(shù)或一個字母也是代數(shù)式)數(shù)與字母相乘,或字母與字母相乘通常使用 乘,或省略不寫;數(shù)與數(shù)相乘,仍應使用乘,不用 乘,也不能省略乘號;數(shù)與字母相乘時,一般在結果中把數(shù)寫在字母前面,如a5應寫成5a;帶分數(shù)與字母相乘時,要把帶分數(shù)改成假分數(shù)形式,如a 應寫成 a;在代數(shù)式中出現(xiàn)除法運算時,一般用分數(shù)線將被除式和除式聯(lián)系,如3a寫成 的形式;a與b的差寫作a-b,要注意字母順序;若只說兩數(shù)的差,當分別設兩數(shù)為a、b時,則應分類,寫做a-b和b-aa與b的平方差是: a2-b2 ; a與b差的平方是:(a

23、-b)2 ;若a、b、c是正整數(shù),則兩位整數(shù)是: 10a+b ,則三位整數(shù)是:100a+10b+c;若m、n是整數(shù),則被5除商m余n的數(shù)是: 5m+n ;偶數(shù)是:2n ,奇數(shù)是:2n+1;三個連續(xù)整數(shù)是: n-1、n、n+1 ;若b0,則正數(shù)是:a2+b ,負數(shù)是: -a2-b ,非負數(shù)是: a2 ,非正數(shù)是:-a2在代數(shù)式中,若只含有乘法(包括乘方)運算?;螂m含有除法運算,但除式中不含字母的一類代數(shù)式叫單項式單項式中不為零的數(shù)字因數(shù),叫單項式的數(shù)字系數(shù),簡稱單項式的系數(shù);系數(shù)不為零時,單項式中所有字母指數(shù)的和,叫單項式的次數(shù)多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多

24、項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù)注意:(若a、b、c、p、q是常數(shù))ax2+bx+c和x2+px+q是常見的兩個二次三項式凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數(shù)式叫整式同類項:所含字母相同,并且相同字母的指數(shù)也相同的單項式是同類項合并同類項法則:系數(shù)相加,字母與字母的指數(shù)不變?nèi)ィㄌ恚├ㄌ柗▌t:去(添)括號時,若括號前邊是+號,括號里的各項都不變號;若括號前邊是-號,括號里的各項都要變號整式的加減,實際上是在去括號的基礎上,把多項式的同類項合并把一個多項式的各項按某個字母的指數(shù)從小到大(或從大到?。┡帕衅饋?,叫做按這個字母的升冪排列(或降冪排列)注意:多項式計算的最后結果

25、一般應該進行升冪(或降冪)排列用=號連接而成的式子叫等式.注意:等量就能代入等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結果仍是等式等式兩邊都乘以(或除以)同一個不為零的數(shù),所得結果仍是等式使等式左右兩邊相等的未知數(shù)的值叫方程的解;注意:方程的解就能代入改變符號后,把方程的項從一邊移到另一邊叫移項.移項的依據(jù)是等式性質(zhì)1只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程ax+b=0(x是未知數(shù),a、b是已知數(shù),且a0)ax=b(x是未知數(shù),a、b是已知數(shù),且a0)整理方程 去分母 去括號 移項 合并同類項 系數(shù)化為1 (檢驗方程的解)讀題分析法:

26、多用于和,差,倍,分問題仔細讀題,找出表示相等關系的關鍵字,例如:大,小,多,少,是,共,合,為,完成,增加,減少,配套-,利用這些關鍵字列出文字等式,并且據(jù)題意設出未知數(shù),最后利用題目中的量與量的關系填入代數(shù)式,得到方程畫圖分析法: 多用于行程問題利用圖形分析數(shù)學問題是數(shù)形結合思想在數(shù)學中的體現(xiàn),仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關系(可把未知數(shù)看做已知量),填入有關的代數(shù)式是獲得方程的基礎行程問題: 距離=速度時間 工程問題: 工作量=工效工時比率問題: 部分=全體比率順逆流問題: 順

27、流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度商品價格問題: 售價=定價折 ,利潤=售價-成本周長、面積、體積問題:C圓=2R,S圓=R2,C長方形=2(a+b),S長方形=ab, C正方形=4aS正方形=a2,S環(huán)形=(R2-r2),V長方體=abc ,V正方體=a3,V圓柱=R2h ,V圓錐= R2h.初一數(shù)學下冊知識點匯總有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角兩條直線相交,所成的四個角中有一個角是直角,那么這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足

28、具有垂直關系的兩條直線所成的4個角都是90過一點有且只有一條直線與已知直線垂直連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短直線外一點到這條直線的垂線段的長度,叫做點到直線的距離在同一平面內(nèi),兩條直線沒有交點,則這兩條直線互相平行,記作:ab在同一平面內(nèi)兩條直線的關系只有兩種:相交或平行經(jīng)過直線外一點,有且只有一條直線與這條直線平行如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行兩條直線被第三條直線所截,在兩條被截線的同一方,截線的同一旁,這樣的兩個角叫做同位角兩條直線被第三條直線所截,在兩條被截線之間,截線的兩側(cè),這樣的兩個角叫做內(nèi)錯角兩條直線被第三條直線所

29、截,在兩條被截線之間,截線的同一旁,這樣的兩個角叫做同旁內(nèi)角方法1兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行。簡單說成:同位角相等,兩直線平行方法2兩條直線被第三條直線所截,如果內(nèi)錯角相等,那么這兩條直線平行。簡單說成:內(nèi)錯角相等,兩直線平行方法3兩條直線被第三條直線所截,如果同旁內(nèi)角互補,那么這兩條直線平行。簡單說成:同旁內(nèi)角互補,兩直線平行性質(zhì)1兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等性質(zhì)2兩條平行線被第三條直線所截,內(nèi)錯角相等。簡單說成:兩直線平行,內(nèi)錯角相等性質(zhì)3兩條平行線被第三條直線所截,同旁內(nèi)角互補。簡單說成:兩直線平行,同旁內(nèi)角互

30、補同時垂直于兩條平行線,并且夾在這兩條平行線間的線段的長度,叫做著兩條平行線的距離把一個圖形整體沿某一方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同新圖形中的每一點,都是由原圖形中的某一點移動后得到的,這兩個點是對應點,連接各組對應點的線段平行且相等有順序的兩個數(shù)a與b組成的數(shù)對,叫做有序數(shù)對平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。水平的數(shù)軸稱為x軸或橫軸,習慣上取向右為正方向;豎直的數(shù)軸稱為y軸或縱軸取2向上方向為正方向;兩坐標軸的交點為平面直角坐標系的原點平面上的任意一點都可以用一個有序數(shù)對來表示建立了平面直角坐標系以后,坐標平面就被兩條坐標軸分為了、四

31、個部分,分別叫做第一象限、第二象限、第三象限和第四象限。坐標軸上的點不屬于任何象限利用平面直角坐標系繪制區(qū)域內(nèi)一些地點分布情況平面圖的過程如下:建立坐標系,選擇一個適當?shù)膮⒄拯c為原點,確定x軸、y軸的正方向;根據(jù)具體問題確定適當?shù)谋壤?,在坐標軸上標出單位長度;在坐標平面內(nèi)畫出這些點,寫出各點的坐標和各個地點的名稱在平面直角坐標系中,將點(x,y)向右(或左)平移a個單位長度,可以得到對應點(xa,y)(或(xa,y);將點(x,y)向上(或下)平移b個單位長度,可以得到對應點(x,yb)(或(x,yb)在平面直角坐標系內(nèi),如果把一個圖形各個點的橫坐標都加(或減去)一個正數(shù)a,相應的新圖形就是

32、把原圖形向右(或向左)平移a個單位長度如果把它各個點的縱坐標都加(或減去)一個正數(shù)a,相應的新圖形就是把原圖形向上(或向下)平移a個單位長度由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形。相鄰兩邊組成的角,叫做三角形的內(nèi)角,簡稱三角形的角頂點是A、B、C的三角形,記作“ABC”,讀作“三角形ABC”三角形的一邊與另一邊的延長線組成的角,叫做三角形的外角三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和三角形的一個外角大于與它不相鄰的任何一個內(nèi)角在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線各個角都相等,各條邊都相等的多邊形叫做

33、正多邊形含有兩個未知數(shù),并且未知數(shù)的指數(shù)都是1的方程叫做二元一次方程把具有相同未知數(shù)的兩個二元一次方程合在一起,就組成了一個二元一次方程組使二元一次方程兩邊的值相等的兩個未知數(shù)的值,叫做二元一次方程的解二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解由二元一次方程組中的一個方程,將一個未知數(shù)用含有另一未知數(shù)的式子表示出來,再代入另一方程,實現(xiàn)消元進而求得這個二元一次方程組的解。這種方法叫做代入消元法,簡稱代入法兩個二元一次方程中同一未知數(shù)的系數(shù)相反或相等時,將兩個方程的兩邊分別相加或相減,就能消去這個未知數(shù),得到一個一元一次方程用“”或“”號表示大小關系的式子叫做不等式能使不等式成立的

34、未知數(shù)的取值范圍,叫做不等式解的集合,簡稱解集含有一個未知數(shù),未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式不等式的性質(zhì)1不等式兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變不等式的性質(zhì)2不等式兩邊乘(或除以)同一個正數(shù),不等號的方向不變不等式的性質(zhì)3不等式兩邊乘(或除以)同一個負數(shù),不等號的方向改變把兩個不等式合起來,就組成了一個一元一次不等式組幾個不等式的解集的公共部分,叫做由它們所組成的不等式的解集。解不等式就是求它的解集對于具有多種不等關系的問題,可通過不等式組解決。解一元一次不等式組時。一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數(shù)軸可以直觀地表示不等式組的解集。解

35、一元一次方程,要根據(jù)等式的性質(zhì),將方程逐步化為xa的形式;而解一元一次不等式,則要根據(jù)不等式的性質(zhì),將不等式逐步化為xa(或xa)的形式1、對數(shù)據(jù)進行處理的一般過程:收集數(shù)據(jù)、整理數(shù)據(jù)、描述數(shù)據(jù)、分析得出結論2、數(shù)據(jù)收集過程中,調(diào)查的方法通常有兩種:全面調(diào)查和抽樣調(diào)查3、除了文字敘述、列表、劃記法外,還可以用條形圖、折線圖、扇形圖、直方圖來描述數(shù)據(jù)4、抽樣調(diào)查簡稱抽查,它只抽取一部分對象進行調(diào)查,根據(jù)調(diào)查數(shù)據(jù)推斷全體對象的情況。要考察的全體對象叫總體,組成總體的每一個考察對象叫個體,被抽取的那部分個體組成總體的一個樣本5、畫頻數(shù)直方圖的步驟:計算數(shù)差(最大值與最小值的差);確定組距和組數(shù);列頻

36、數(shù)分布表;畫頻數(shù)直方圖初一數(shù)學下冊知識點匯總在平面直角坐標系內(nèi),如果把一個圖形各個點的橫坐標都加(或減去)一個正數(shù)a,相應的新圖形就是把原圖形向右(或向左)平移a個單位長度初二數(shù)學上冊知識點匯總一一次次函函數(shù)數(shù)函數(shù)的定義:設A,B都是非空的數(shù)的集合,f:xy是從A到B的一個對應法則,那么從A到B的映射f:AB就叫做函數(shù),記作y=f(x)函數(shù)的定義域:xA,yB,原象集合A叫做函數(shù)f(x)的定義域值域:象集合C叫做函數(shù)f(x)的值域函數(shù)三種表示法:解析式法(用數(shù)學式子表示兩個變量之間的函數(shù)關系)圖像法(用坐標系中的圖像表示兩個變量之間的函數(shù)關系)列表法(用表格表示兩個變量之間的函數(shù)關系)表達式就

37、是數(shù)學式子,即用解析式法表示的那個數(shù)學式子如,y=x+1就是表示變量x與y函數(shù)關系的表達式函數(shù)的圖像:函數(shù)f的圖形(或圖象)指的是所有有序?qū)?x,f(x)組成的集合。具體而言,如果x為實數(shù),則函數(shù)圖形在平面直角坐標系上呈現(xiàn)為一條曲線函數(shù)圖像的性質(zhì):1. 作法與圖形:通過如下3個步驟(1)算出該函數(shù)圖象與Y軸和X軸的交點的坐標(2)描點;(3)連線,可以作出一次函數(shù)的圖象-一條直線2. 性質(zhì):在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b3. k,b與函數(shù)圖象所在象限當k0時,直線必通過一、三象限,從左往右,y隨x的增大而增大;當k0時,直線必通過一、二象限;當b0時,直線只通過一

38、、三象限;當k0時(一三象限),K的絕對值越大,圖像與y軸的距離越近,函數(shù)值y隨著自變量x的增大而增大當Kb,bc,則ac5.無理數(shù)的比較大?。豪闷椒睫D(zhuǎn)化為有理數(shù):實數(shù)運算:加法法則:可使用加法交換律:兩個數(shù)相加,交換加數(shù)的位置,和不變加法結合律:三個數(shù)相加,先把前兩個數(shù)相加,或先把后兩個數(shù)相加,和不變減法法則:乘法法則:乘法可使用乘法交換律:兩個數(shù)相乘,交換因數(shù)的位置,積不變乘法結合律 :三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積不變分配律 : 一個數(shù)同兩個數(shù)的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,再把積相加除法法則:乘方:實數(shù)的運算順序:初二數(shù)學下冊知識點匯總分分式式分式的

39、定義:如果A、B表示兩個整式,并且B中含有字母,那么 式子叫做分式分式有意義的條件是分母不為零,分式值為零的條件是分子為零且分母不為零分式的基本性質(zhì):分式的分子與分母同乘或除以一個不等于0的整式,分式的值不變分式的通分和約分:關鍵先是分解因式分式的運算:分式乘法法則:分式除法法則:分式乘方法則:分式的加減法則:混合運算:CBCABA=CBCABA=任何一個不等于零的數(shù)的零次冪等于1正整數(shù)指數(shù)冪運算性質(zhì) 推廣到整數(shù)指數(shù)冪(m,n是整數(shù))分式方程:含分式,并且分母中含未知數(shù)的方程分式方程解分式方程過程:實質(zhì)上是將方程兩邊同乘以一個整式(最簡公分母),把分式方程轉(zhuǎn)化為整式方程解分式方程時,方程兩邊同

40、乘以最簡公分母時,最簡公分母有可能為,這樣就產(chǎn)生了增根因此分式方程一定要驗根解分式方程的步驟 :(1)能化簡的先化簡(2)方程兩邊同乘以最簡公分母,化為整式方程(3)解整式方程(4)驗根增根應滿足兩個條件: 一是其值應使最簡公分母為0二是其值應是去分母后所的整式方程的根分式方程檢驗方法:將整式方程的解帶入最簡公分母,如果最簡公分母的值不為0則整式方程的解是原分式方程的解否則,這個解不是原分式方程的解列方程應用題的步驟: (1)審(2)設應用題基本上有五種:科學記數(shù)法:把一個數(shù)表示成 的形式(其中 ,n是整數(shù))的記數(shù)方法叫做科學記數(shù)法用科學記數(shù)法表示絕對值大于10的n位整數(shù)時,其中10的指數(shù)是n

41、-1用科學記數(shù)法表示絕對值小于1的正小數(shù)時,其中10的指數(shù)是第一個非0數(shù)字前面0的個數(shù)(包括小數(shù)點前面的一個0)反反比比例例函函數(shù)數(shù)定義:形如y (k為常數(shù),k0)的函數(shù)稱為反比例函數(shù)。其他形式xy=k 圖像:反比例函數(shù)的圖像屬于雙曲線反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形有兩條對稱軸:直線y=x和 y=-x性質(zhì):當k0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減小當k0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大|k|的幾何意義:表示反比例函數(shù)圖像上的點向兩坐標軸所作的垂線段與兩坐標軸圍成的矩形的面積勾勾股股定定理理勾股定理:如果

42、直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么a2b2=c2勾股定理逆定理:如果三角形三邊長a,b,c滿足a2b2=c2。,那么這個三角形是直角三角形經(jīng)過證明被確認正確的命題叫做定理bcadcdbadcbabdacdcba=;na 10 xk如果把其中一個叫做原命題,那么另一個叫做它的逆命題四四邊邊形形平行四邊形定義:有兩組對邊分別平行的四邊形叫做平行四邊形平行四邊形的性質(zhì):平行四邊形的對邊相等;平行四邊形的對角相等。平行四邊形的對角線互相平分平行四邊形的判定1.兩組對邊分別相等的四邊形是平行四邊形2.對角線互相平分的四邊形是平行四邊形3.兩組對角分別相等的四邊形是平行四邊形4.一組對邊

43、平行且相等的四邊形是平行四邊形矩形的定義:有一個角是直角的平行四邊形矩形的性質(zhì):矩形的四個角都是直角;矩形的對角線平分且相等。AC=BD菱形的定義 :鄰邊相等的平行四邊形菱形的判定定理:1.一組鄰邊相等的平行四邊形是菱形2.對角線互相垂直的平行四邊形是菱形3.四條邊相等的四邊形是菱形正方形定義:一個角是直角的菱形或鄰邊相等的矩形正方形的性質(zhì):四條邊都相等,四個角都是直角正方形既是矩形,又是菱形正方形判定定理:1.鄰邊相等的矩形是正方形2.有一個角是直角的菱形是正方形梯形的定義:一組對邊平行,另一組對邊不平行的四邊形叫做梯形直角梯形的定義:有一個角是直角的梯形等腰梯形的定義:兩腰相等的梯形等腰梯

44、形的性質(zhì):等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等等腰梯形判定定理:同一底上兩個角相等的梯形是等腰梯形數(shù)數(shù)據(jù)據(jù)的的分分析析加權平均數(shù):加權平均數(shù)的計算公式學會權沒有直接給出數(shù)量,而是以比的或百分比的形式出現(xiàn)及頻數(shù)分布表求加權平均數(shù)的方法中位數(shù):將一組數(shù)據(jù)按照由小到大(或由大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù)如果數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù)眾數(shù):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)極差:一組數(shù)據(jù)中的最大數(shù)據(jù)與最小數(shù)據(jù)的差叫做這組數(shù)據(jù)方差越大,數(shù)據(jù)的波動越大;方差越小,數(shù)據(jù)的波動越小,就越穩(wěn)定數(shù)據(jù)收集與

45、整理步驟: 1.收集數(shù)據(jù)2.整理數(shù)據(jù)平均數(shù)受極端值的影響眾數(shù)不受極端值的影響,這是一個優(yōu)勢,中位數(shù)的計算很少不受極端值的影響求用解析式表示的函數(shù)的定義域,就是求使函數(shù)各個組成部分有意義的集合的交集,初二數(shù)學上冊知識點匯總設A,B都是非空的數(shù)的集合,f:xy是從A到B的一個對應法則,那么從A到B的映射f:AB就叫做函數(shù),記作y=f(x)xA,yB,原象集合A叫做函數(shù)f(x)的定義域象集合C叫做函數(shù)f(x)的值域解析式法(用數(shù)學式子表示兩個變量之間的函數(shù)關系)圖像法(用坐標系中的圖像表示兩個變量之間的函數(shù)關系)列表法(用表格表示兩個變量之間的函數(shù)關系)表達式就是數(shù)學式子,即用解析式法表示的那個數(shù)學

46、式子如,y=x+1就是表示變量x與y函數(shù)關系的表達式函數(shù)f的圖形(或圖象)指的是所有有序?qū)?x,f(x)組成的集合。具體而言,如果x為實數(shù),則函數(shù)圖形在平面直角坐標系上呈現(xiàn)為一條曲線1. 作法與圖形:通過如下3個步驟(1)算出該函數(shù)圖象與Y軸和X軸的交點的坐標(2)描點;(3)連線,可以作出一次函數(shù)的圖象-一條直線2. 性質(zhì):在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b3. k,b與函數(shù)圖象所在象限當k0時,直線必通過一、三象限,從左往右,y隨x的增大而增大;當k0時,直線必通過一、二象限;當b0時,直線只通過一、三象限;當k0時(一三象限),K的絕對值越大,圖像與y軸的距離越

47、近,函數(shù)值y隨著自變量x的增大而增大當Kb0,則a2b2或利用倒數(shù)轉(zhuǎn)化(1)同號兩數(shù)相加,取相同的符號,并把它們的絕對值相加(2)異號兩數(shù)相加,取絕對值大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值減去一個數(shù)等于加上這個數(shù)的相反數(shù)。即a-b=a+(-b)(1)兩數(shù)相乘,同號取正,異號取負,并把絕對值相乘(2)n個實數(shù)相乘,有一個因數(shù)為0,積就為0;若n個非0的實數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定,當負因數(shù)有偶數(shù)個時,積為正;當負因數(shù)為奇數(shù)個時,積為負(1)兩數(shù)相除,同號得正,異號得負,并把絕對值相除(2)除以一個數(shù)等于乘以這個數(shù)的倒數(shù)(3)0除以任何數(shù)都等于0,0不能做被除數(shù)所表示的意義是n

48、個a相乘正數(shù)的任何次冪是正數(shù),負數(shù)的偶次冪是正數(shù),負數(shù)的奇次冪是負數(shù)乘方與開方互為逆運算乘方、開方為三級運算,乘、除為二級運算,加、減是一級運算如果沒有括號,在同一級運算中要從左到右依次運算不同級的運算,先算高級的運算再算低級的運算,有括號的先算括號里的運算無論何種運算,都要注意先定符號后運算分式乘分式,用分子的積作為積的分子,分母的積作為分母分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘分式乘方要把分子、分母分別乘方同分母的分式相加減,分母不變,把分子相加減。異分母的分式相加減,先通分,變?yōu)橥帜阜质?,然后再加減運算順序和以前一樣。能用運算率簡算的可用運算率簡算BA0C指一個數(shù)在數(shù)

49、軸上所對應點到原點的距離叫做這個數(shù)的絕對值,絕對值用 | |來表示。|b-a|或|a-b|表示數(shù)軸上表示a的點和表示b的點的距離在數(shù)軸上,一個數(shù)到原點的距離叫做該數(shù)的絕對值非負數(shù)的絕對值是它本身,非正數(shù)的絕對值是它的相反數(shù)只有符號不同,絕對值相等的兩個數(shù),我們就說其中一個是另一個的相反數(shù)。0的相反數(shù)是0。一般地,任意的一個有理數(shù)a,它的相反數(shù)是-aa本身既可以是正數(shù),也可以是負數(shù),還可以是零實數(shù)與數(shù)軸上的點是一一對應的關系對每一個實數(shù),總能在數(shù)軸上找到唯一點與之的對應反之,對數(shù)軸上任意一個點,總能確定一個唯一的實數(shù)值1.在數(shù)軸上表示兩個數(shù),右邊的數(shù)總比左邊的數(shù)大2.正數(shù)大于0;負數(shù)小于0;正數(shù)

50、大于一切負數(shù);兩個負數(shù)絕對值大的反而小4.對于實數(shù)a,b,c,若ab,bc,則ac5.無理數(shù)的比較大?。豪闷椒睫D(zhuǎn)化為有理數(shù):可使用加法交換律:兩個數(shù)相加,交換加數(shù)的位置,和不變加法結合律:三個數(shù)相加,先把前兩個數(shù)相加,或先把后兩個數(shù)相加,和不變乘法可使用乘法交換律:兩個數(shù)相乘,交換因數(shù)的位置,積不變乘法結合律 :三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積不變分配律 : 一個數(shù)同兩個數(shù)的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,再把積相加初二數(shù)學下冊知識點匯總?cè)绻鸄、B表示兩個整式,并且B中含有字母,那么 式子叫做分式分式有意義的條件是分母不為零,分式值為零的條件是分子為零且分母不為

51、零分式的分子與分母同乘或除以一個不等于0的整式,分式的值不變即 ;當n為正整數(shù)時, ( (1)同底數(shù)的冪乘法:(2)冪的乘方:(3)積的乘方:(4)同底數(shù)冪的除法:( a0)(5)商的乘方:(b0)(3)列(4)解(5)答(1)行程問題:基本公式:路程=速度時間而行程問題中又分相遇問題、追及問題(2)數(shù)字問題 在數(shù)字問題中要掌握十進制數(shù)的表示法(3)工程問題 基本公式:工作量=工時工效(4)順水逆水問題 v順水=v靜水+v水 v逆水=v靜水-v水對稱中心是:原點我們把題設、結論正好相反的兩個命題叫做互逆命題, abab acadbcadbccccbdbdbdbd=nnnbaba=)() 0(

52、10=aannaa1=-) 0anmnmaaa+=mnnmaa=)(nnnbaab=)(nmnmaaa-=nnnbaba=)(101 a1-= kxyxky1=推廣到整數(shù)指數(shù)冪(m,n是整數(shù))含分式,并且分母中含未知數(shù)的方程分式方程實質(zhì)上是將方程兩邊同乘以一個整式(最簡公分母),把分式方程轉(zhuǎn)化為整式方程解分式方程時,方程兩邊同乘以最簡公分母時,最簡公分母有可能為,這樣就產(chǎn)生了增根因此分式方程一定要驗根(2)方程兩邊同乘以最簡公分母,化為整式方程一是其值應使最簡公分母為0二是其值應是去分母后所的整式方程的根將整式方程的解帶入最簡公分母,如果最簡公分母的值不為0則整式方程的解是原分式方程的解否則,

53、這個解不是原分式方程的解把一個數(shù)表示成 的形式(其中 ,n是整數(shù))的記數(shù)方法叫做科學記數(shù)法用科學記數(shù)法表示絕對值大于10的n位整數(shù)時,其中10的指數(shù)是n-1用科學記數(shù)法表示絕對值小于1的正小數(shù)時,其中10的指數(shù)是第一個非0數(shù)字前面0的個數(shù)(包括小數(shù)點前面的一個0)形如y (k為常數(shù),k0)的函數(shù)稱為反比例函數(shù)。其他形式xy=k 反比例函數(shù)的圖像屬于雙曲線反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形當k0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減小當k0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大表示反比例函數(shù)圖像上的點向兩坐標軸所作的垂

54、線段與兩坐標軸圍成的矩形的面積如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么a2b2=c2如果三角形三邊長a,b,c滿足a2b2=c2。,那么這個三角形是直角三角形經(jīng)過證明被確認正確的命題叫做定理bcadcdbadcbabdacdcba=;na 10S菱形=1/2ab(a、b為兩條對角線)權的理解: 反映了某個數(shù)據(jù)在整個數(shù)據(jù)中的重要程度3.描述數(shù)據(jù)4.分析數(shù)據(jù)5.撰寫調(diào)查報告6.交流如果把其中一個叫做原命題,那么另一個叫做它的逆命題有兩組對邊分別平行的四邊形叫做平行四邊形平行四邊形的對邊相等;平行四邊形的對角相等。平行四邊形的對角線互相平分1.兩組對邊分別相等的四邊形是平行四邊形2.

55、對角線互相平分的四邊形是平行四邊形3.兩組對角分別相等的四邊形是平行四邊形4.一組對邊平行且相等的四邊形是平行四邊形有一個角是直角的平行四邊形矩形的四個角都是直角;矩形的對角線平分且相等。AC=BD1.一組鄰邊相等的平行四邊形是菱形2.對角線互相垂直的平行四邊形是菱形3.四條邊相等的四邊形是菱形一個角是直角的菱形或鄰邊相等的矩形四條邊都相等,四個角都是直角正方形既是矩形,又是菱形1.鄰邊相等的矩形是正方形2.有一個角是直角的菱形是正方形一組對邊平行,另一組對邊不平行的四邊形叫做梯形等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等同一底上兩個角相等的梯形是等腰梯形學會權沒有直接給出數(shù)量,

56、而是以比的或百分比的形式出現(xiàn)及頻數(shù)分布表求加權平均數(shù)的方法將一組數(shù)據(jù)按照由小到大(或由大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù)如果數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù)一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)一組數(shù)據(jù)中的最大數(shù)據(jù)與最小數(shù)據(jù)的差叫做這組數(shù)據(jù)方差越大,數(shù)據(jù)的波動越大;方差越小,數(shù)據(jù)的波動越小,就越穩(wěn)定平均數(shù)受極端值的影響眾數(shù)不受極端值的影響,這是一個優(yōu)勢,中位數(shù)的計算很少不受極端值的影響初二數(shù)學上冊知識點匯總函數(shù)f的圖形(或圖象)指的是所有有序?qū)?x,f(x)組成的集合。具體而言,如果x為實數(shù),則函數(shù)圖形在平面直角坐標系

57、上呈現(xiàn)為一條曲線1. 作法與圖形:通過如下3個步驟(1)算出該函數(shù)圖象與Y軸和X軸的交點的坐標(2)描點;(3)連線,可以作出一次函數(shù)的圖象-一條直線求用解析式表示的函數(shù)的定義域,就是求使函數(shù)各個組成部分有意義的集合的交集,5.直角三角形全等條件有:斜邊及一直角邊對應相等的兩個直角三角形全等(HL或“斜邊,直角邊”) SSS,SAS,ASA,AAS,HL均為判定三角形全等的定理點(x,y)關于x軸對稱的點的坐標是(x,-y),關于y軸對稱的點的坐標是(-x,y),關于原點對稱的點的坐標是(-x,-y)任何數(shù)有且只有三個立方根,它們均勻分布在以原點為圓心,算術根為半徑的圓周上,三個立方根對應的點

58、構成正三角形。條直線叫做對稱軸,折疊后重合的點是對應點,叫做對稱點指一個數(shù)在數(shù)軸上所對應點到原點的距離叫做這個數(shù)的絕對值,絕對值用 | |來表示。|b-a|或|a-b|表示數(shù)軸上表示a的點和表示b的點的距離只有符號不同,絕對值相等的兩個數(shù),我們就說其中一個是另一個的相反數(shù)。0的相反數(shù)是0。一般地,任意的一個有理數(shù)a,它的相反數(shù)是-a初二數(shù)學下冊知識點匯總(2)n個實數(shù)相乘,有一個因數(shù)為0,積就為0;若n個非0的實數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定,當負因數(shù)有偶數(shù)個時,積為正;當負因數(shù)為奇數(shù)個時,積為負同分母的分式相加減,分母不變,把分子相加減。異分母的分式相加減,先通分,變?yōu)橥帜阜质?,然后?/p>

59、加減初三數(shù)學上冊知識點總結二二次次根根式式二次根式:把形如 的式子叫做二次根式, “ ” 表示二次根號最簡二次根式:若二次根式滿足:被開方數(shù)不含分母被開方數(shù)中不含能開得盡方的因數(shù)或因式這樣的二次根式叫做最簡二次根式化簡:化二次根式為最簡二次根式(1)如果被開方數(shù)是分數(shù)(包括小數(shù))或分式,先利用商的算數(shù)平方根的性質(zhì)把它寫成分式的形式,然后利用分母有理化進行化簡(2)如果被開方數(shù)是整數(shù)或整式,先將他分解因數(shù)或因式,然后把能開得盡方的因數(shù)或因式開出來同類二次根式:幾個二次根式化成最簡二次根式以后,如果被開方數(shù)相同,這幾個二次根式叫做同類二次根式代數(shù)式:運用基本運算符號,把數(shù)和表示數(shù)的字母連起來的式子

60、,叫代數(shù)式二次根式的性質(zhì):1)2) 3)(乘法)4)(除法)二次根式混合運算:1二次根式加減時,可以把二次根式化成最簡二次根式,再把被開方數(shù)相同的最簡二次根式進行合并2二次根式的混合運算與實數(shù)中的運算順序一樣,先乘方,再乘除,最后加減,有括號的先算括號里的(或先去括號)一一元元二二次次方方程程一元二次方程:含有一個未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的整式方程叫做一元二次方程一般形式:一般形式其中 叫做二次項,a叫做二次項系數(shù);bx叫做一次項,b叫做一次項系數(shù);c叫做常數(shù)項降次解一元二次方程:降次:把一元二次方程化成兩個一元一次方程的過程(不管用什么方法解一元二次方程,都是要一元二

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論