Fourier Trans and applications University f Central Florida傅立葉變換及應用中佛羅里達大學_第1頁
Fourier Trans and applications University f Central Florida傅立葉變換及應用中佛羅里達大學_第2頁
Fourier Trans and applications University f Central Florida傅立葉變換及應用中佛羅里達大學_第3頁
Fourier Trans and applications University f Central Florida傅立葉變換及應用中佛羅里達大學_第4頁
Fourier Trans and applications University f Central Florida傅立葉變換及應用中佛羅里達大學_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、fourier transform and applicationsby njegos nincic fourierovervieww transformsnmathematical introductionw fourier transformntime-space domain and frequency domainndiscret fourier transformlfast fourier transformnapplicationsw summaryw referencestransformsw transform:nin mathematics, a function that

2、results when a given function is multiplied by a so-called kernel function, and the product is integrated between suitable limits. (britannica)w can be thought of as a substitutiontransformsw example of a substitution:w original equation: x + 4x 8 = 0w familiar form: ax + bx + c = 0w let: y = xw sol

3、ve for yw x = y4transformsw transforms are used in mathematics to solve differential equations:noriginal equation: napply laplace transform: ntake inverse transform: y = l(y)y9y15e2ts2ly9ly15s2l y15s 2 s29fourier transformw property of transforms:nthey convert a function from one domain to another w

4、ith no loss of informationw fourier transform: converts a function from the time (or spatial) domain to the frequency domaintime domain and frequency domainw time domain:ntells us how properties (air pressure in a sound function, for example) change over time:lamplitude = 100lfrequency = number of c

5、ycles in one second = 200 hztime domain and frequency domainw frequency domain:ntells us how properties (amplitudes) change over frequencies:time domain and frequency domainw example:nhuman ears do not hear wave-like oscilations, but constant tonew often it is easier to work in the frequency domaint

6、ime domain and frequency domainw in 1807, jean baptiste joseph fourier showed that any periodic signal could be represented by a series of sinusoidal functions in picture: the composition of the first two functions gives the bottom onetime domain and frequency domainfourier transformw because of the

7、 property:w fourier transform takes us to the frequency domain:discrete fourier transformw in practice, we often deal with discrete functions (digital signals, for example)w discrete version of the fourier transform is much more useful in computer science:w o(n) time complexityfast fourier transform

8、w many techniques introduced that reduce computing time to o(n log n)w most popular one: radix-2 decimation-in-time (dit) fft cooley-tukey algorithm: (divide and conquer)applicationsw in image processing:ninstead of time domain: spatial domain (normal image space)nfrequency domain: space in which ea

9、ch image value at image position f represents the amount that the intensity values in image i vary over a specific distance related to f applications: frequency domain in imagesw if there is value 20 at the point that represents the frequency 0.1 (or 1 period every 10 pixels). this means that in the

10、 corresponding spatial domain image i the intensity values vary from dark to light and back to dark over a distance of 10 pixels, and that the contrast between the lightest and darkest is 40 gray levels applications: frequency domain in imagesw spatial frequency of an image refers to the rate at whi

11、ch the pixel intensities change w in picture on right:nhigh frequences:lnear centernlow frequences:lcornersapplications: image filteringw other applications of the dftw signal analysisw sound filteringw data compressionw partial differential equationsw multiplication of large integerssummaryw transf

12、orms:nuseful in mathematics (solving de)w fourier transform:nlets us easily switch between time-space domain and frequency domain so applicable in many other areasneasy to pick out frequenciesnmany applicationsreferenceswconcepts and the frequency domainnhttp:/www.spd.eee.strath.ac.uk/interact/fourier/concepts.htmlwthe frequency domain introductionnhttp:/nam.vn/unescocourse/computervision/91.htmwjpnm physics fourier transform nhttp:/

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論