浙江高考數(shù)學(xué)理二輪專題復(fù)習檢測:第一部分 專題整合高頻突破 專題六 解析幾何 專題能力訓(xùn)練16 Word版含答案_第1頁
浙江高考數(shù)學(xué)理二輪專題復(fù)習檢測:第一部分 專題整合高頻突破 專題六 解析幾何 專題能力訓(xùn)練16 Word版含答案_第2頁
浙江高考數(shù)學(xué)理二輪專題復(fù)習檢測:第一部分 專題整合高頻突破 專題六 解析幾何 專題能力訓(xùn)練16 Word版含答案_第3頁
浙江高考數(shù)學(xué)理二輪專題復(fù)習檢測:第一部分 專題整合高頻突破 專題六 解析幾何 專題能力訓(xùn)練16 Word版含答案_第4頁
浙江高考數(shù)學(xué)理二輪專題復(fù)習檢測:第一部分 專題整合高頻突破 專題六 解析幾何 專題能力訓(xùn)練16 Word版含答案_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、高考數(shù)學(xué)精品復(fù)習資料 2019.5專題能力訓(xùn)練16圓錐曲線中的熱點問題(時間:60分鐘滿分:100分)一、選擇題(本大題共8小題,每小題5分,共40分)1.(20xx浙江嘉興一模)已知拋物線y2=4x的焦點為f,直線l過f且與拋物線交于a,b兩點,若|ab|=5,則ab中點的橫坐標為() ab.2cd.12.橢圓ax2+by2=1與直線y=1-x交于a,b兩點,過原點與線段ab中點的直線的斜率為,則的值為()abcd3.已知直線y=x與雙曲線=1交于a,b兩點,p為雙曲線上不同于a,b的點,當直線pa,pb的斜率kpa,kpb存在時,kpa·kpb=()abcd.與p點位置有關(guān)4.設(shè)

2、過點p(x,y)的直線分別與x軸的正半軸和y軸的正半軸交于a,b兩點,點q與點p關(guān)于y軸對稱,o為坐標原點.若=2,且=1,則點p的軌跡方程是()ax2+3y2=1(x>0,y>0)bx2-3y2=1(x>0,y>0)c.3x2-y2=1(x>0,y>0)d.3x2+y2=1(x>0,y>0)5.在平面直角坐標系xoy中,點a(-1,1)在拋物線c:x2=ay(a0)上,拋物線c上異于點a的兩點p,q滿足=(<0),直線op與qa交于點r,pqr和par的面積滿足spqr=3spar,則點p的橫坐標為()a.-4b.-2c.2d.46.已知

3、f為拋物線y2=x的焦點,點a,b在該拋物線上且位于x軸的兩側(cè),=2(其中o為坐標原點),則abo與afo面積之和的最小值是()a.2b.3cd7.已知點p在雙曲線=1上,點a滿足=(t-1)(tr),且=64,=(0,1),則|的最大值為()abcd8.如圖,點f1,f2是橢圓c1的左、右焦點,橢圓c1與雙曲線c2的漸近線交于點p,pf1pf2,橢圓c1與雙曲線c2的離心率分別為e1,e2,則()abcd二、填空題(本大題共6小題,每小題5分,共30分)9.在平面直角坐標系中,動點p和點m(-2,0),n(2,0)滿足|·|+=0,則動點p(x,y)的軌跡方程為. 10.

4、已知斜率為的直線l與拋物線y2=2px(p>0)交于位于x軸上方的不同兩點a,b,記直線oa,ob的斜率分別為k1,k2,則k1+k2的取值范圍是. 11.拋物線y=-x2上的點到直線4x+3y-8=0的距離的最小值是. 12.(20xx浙江臺州實驗中學(xué)模擬)已知直線y=a交拋物線y=x2于a,b兩點,若該拋物線上存在點c,使得acb為直角,則a的取值范圍為. 13.雙曲線=1(a>0,b>0)的右焦點為f,直線y=x與雙曲線相交于a,b兩點,若afbf,則雙曲線的漸近線方程為. 14.已知拋物線y2=4x的焦點為f,過焦點的直線與拋物

5、線交于a,b兩點,則直線的斜率為時,|af|+4|bf|取得最小值. 三、解答題(本大題共2小題,共30分.解答應(yīng)寫出必要的文字說明、證明過程或演算步驟)15.(本小題滿分15分)如圖,已知直線y=-2mx-2m2+m與拋物線c:x2=y相交于a,b兩點,定點m(1)證明:線段ab被直線y=-x平分;(2)求mab面積取得最大值時m的值.16.(本小題滿分15分)已知橢圓c的中心在坐標原點,焦點在x軸上,左頂點為a,左焦點為f1(-2,0),點b(2,)在橢圓c上,直線y=kx(k0)與橢圓c交于e,g兩點,直線ae,ag分別與y軸交于點m,n.(1)求橢圓c的方程;(2)在x軸上是

6、否存在點p,使得無論非零實數(shù)k怎樣變化,總有mpn為直角?若存在,求出點p的坐標;若不存在,請說明理由.參考答案專題能力訓(xùn)練16圓錐曲線中的熱點問題1.c解析 拋物線y2=4x,p=2,設(shè)經(jīng)過點f的直線與拋物線相交于a,b兩點,其橫坐標分別為x1,x2,利用拋物線定義,得ab中點橫坐標為x0=(x1+x2)=(|ab|-p)=×(5-2)=.2.a解析 設(shè)a(x1,y1), b(x2,y2),線段ab中點m(x0,y0).由題設(shè)知kom=.由=-.又=-1,所以.3.a解析 設(shè)點a(x1,y1),b(x2,y2),p(x0,y0),則由得y2=,則y1+y2=0,y1y2=-,x1+

7、x2=0,x1x2=-4×.由于kpa·kpb=,即kpa·kpb為定值,選a.4.a解析設(shè)a(a,0),b(0,b),a>0,b>0.由=2,得(x,y-b)=2(a-x,-y),即a=x>0,b=3y>0.點q(-x,y),故由=1,得(-x,y)·(-a,b)=1,即ax+by=1.將a,b代入ax+by=1,得所求的軌跡方程為x2+3y2=1(x>0,y>0).5.b解析 點a(-1,1)在拋物線c:x2=ay(a0)上,故a=1.設(shè)點p(x1,),q(x2,),p,q滿足=(<0),kpq=koa,即x

8、1+x2=-1.設(shè)r(m,n),使得pqr和par的面積滿足spqr=3spar,所以=3,又pqoa,故=3,即x2-x1=3,又x1+x2=-1,x1=-2.故選b.6.b解析 設(shè)ab所在直線方程為x=my+t.由消去x,得y2-my-t=0.設(shè)a(,y1),b(,y2)(不妨令y1>0,y2<0),故=m,y1y2=-t.而+y1y2=2.解得y1y2=-2或y1y2=1(舍去).所以-t=-2,即t=2.所以直線ab過定點m(2,0).而sabo=samo+sbmo=|om|y1-y2|=y1-y2,safo=|of|×y1=y1=y1,故sabo+safo=y1

9、-y2+y1=y1-y2.由y1-y2=y1+(-y2)2=2=3,得sabo+safo的最小值為3,故選b.7.b8.d解析 設(shè)橢圓的方程為=1,雙曲線的方程為=1,p(x,y),由題意可知=c2,=c2,雙曲線的漸近線方程:y=±x,將漸近線方程代入橢圓方程,解得x2=,y2=,由pf1pf2,|op|=|f1f2|=c,x2+y2=c2,代入整理得c2=2c2,兩邊同除以c4,由橢圓及雙曲線的離心率公式可知e1=,e2=,整理得.9.y2=-8x解析 由題意可知=(4,0),=(x+2,y),=(x-2,y),由|·|+=0,可知4+4(x-2)=0,化簡,得y2=-

10、8x.10.(2,+)解析 設(shè)a(2p,2pt1),b(2p,2pt2),則kab=,所以t1+t2=2.所以k1+k2=2,且等號不能成立.11.解析 如圖,設(shè)與直線4x+3y-8=0平行且與拋物線y=-x2相切的直線為4x+3y+b=0,切線方程與拋物線方程聯(lián)立得消去y整理得3x2-4x-b=0,則=16+12b=0,解得b=-,所以切線方程為4x+3y-=0,拋物線y=-x2上的點到直線4x+3y-8=0距離的最小值是這兩條平行線間的距離d=.12.1,+)解析 如圖所示,可知a(-,a),b(,a),設(shè)c(m,m2),=(m+,m2-a),=(m-,m2-a).該拋物線上存在點c,使得

11、acb為直角,=(m+)(m-)+(m2-a)2=0.化為m2-a+(m2-a)2=0.m,m2=a-10,解得a1.a的取值范圍為1,+).13.y=±2x解析 由題意可知雙曲線=1(a>0,b>0)焦點在x軸上,右焦點f(c,0),則整理得(9b2-16a2)x2=9a2b2,即x2=,a與b關(guān)于原點對稱,設(shè)a,b,.afbf,=0,即(x-c)(-x-c)+x·=0,整理得c2=x2.a2+b2=,即9b4-32a2b2-16a4=0,(b2-4a2)(9b2+4a2)=0,a>0,b>0,9b2+4a20,b2-4a2=0,故b=2a,雙曲線

12、的漸近線方程為y=±x=±2x.14.±2解析 由題意知p=2,設(shè)|af|=m,|bf|=n,則=1,m+4n=(m+4n)=5+9,當且僅當m=2n時,m+4n的最小值為9,設(shè)直線的斜率為k,方程為y=k(x-1),代入拋物線方程,得k2(x-1)2=4x.化簡后為k2x2-(2k2+4)x+k2=0.設(shè)a(x1,y1),b(x2,y2),則有x1x2=1,x1+x2=2+.根據(jù)拋物線性質(zhì)可知,|af|=x1+1,|bf|=x2+1,x1+1=2(x2+1),聯(lián)立可得k=±2.15.(1)證明 設(shè)a(x1,y1),b(x2,y2),聯(lián)立方程組得x2+2

13、mx+2m2-m=0,x1+x2=-2m,x1·x2=2m2-m,>0,解得0<m<1,則=-m,=m,線段ab的中點坐標為(-m,m),故線段ab被直線y=-x平分.(2)解 |ab|=(0<m<1),點m到直線ab的距離為d=,mab的面積s=|ab|d=|1-2(-m2+m)|(0<m<1),令=t,則s=t|1-2t2|.又0<t,s=t-2t3,令f(t)=t-2t3,則f'(t)=1-6t2,則f(t)在上單調(diào)遞增,在上單調(diào)遞減,故當t=時,f(t)取得最大值,即mab面積取得最大值,此時有,解得m=.16.解 (1)設(shè)橢圓c的方程為=1(a>b>0),因為橢圓的左焦點為f1(-2,0),所以a2-b2=4,設(shè)橢圓的右焦點為f2(2,0),已知點b(2,)在橢圓c上,由橢圓的定義知|bf1|+|bf2|=2a,所以2a=3=4,所以a=2,從而b=2,所以橢圓c的方程為=1.(2)因為橢圓c的左頂點為a,則點a的坐標為(-2,0),因為直線y=kx(k0)與橢圓=1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論