高考數(shù)學(xué)三輪專題復(fù)習(xí)素材解答題必做部分_第1頁(yè)
高考數(shù)學(xué)三輪專題復(fù)習(xí)素材解答題必做部分_第2頁(yè)
高考數(shù)學(xué)三輪專題復(fù)習(xí)素材解答題必做部分_第3頁(yè)
高考數(shù)學(xué)三輪專題復(fù)習(xí)素材解答題必做部分_第4頁(yè)
免費(fèi)預(yù)覽已結(jié)束,剩余1頁(yè)可下載查看

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、學(xué)習(xí)必備歡迎下載解答題必做部分 保溫特訓(xùn) 1如圖,在直三棱柱ABC-A1B1C1 中, ACB90°, BAC 30°,BC 1,A1A6,M 是 CC1 的中點(diǎn)(1)求證: A1 BAM;(2)求二面角 B -AM-C 的平面角的大小(1)證明以點(diǎn) C 為原點(diǎn),CB、CA、CC1 所在直線為 x,y,z 軸,建立空間直角坐標(biāo)系 Cxyz,如圖所示,則 B(1,0,0), A(0, 3, 0),A1(0, 3, 6),M , , 6 .002,6.所以 A1B(1, 3,6), AM032 1×0(3)× ( 3) (6)×6 0,所以 A1因

2、為 A1·BB AM2AM.(2)解因?yàn)?11 是直三棱柱,所以 CC1平面 ABC,又 BC? 平面ABC -ABC,所以CC1BC.ABC因?yàn)?ACB90°,即 BC AC,又 ACCC1C,所以 BC平面 ACC1A1,即 BC平面 AMC.所以 CB是平面 AMC 的一個(gè)法向量,CB(1,0,0)設(shè) n(x,y,z)是平面 BAM 的一個(gè)法向量,6BA(1,3, 0), BM 1,0,2 .學(xué)習(xí)必備歡迎下載0,x 3y 0,n·BA由得6x 2 z 0,n·BM 0,令 z 2,得 x 6,y 2.所以 n(6,2, 2),因?yàn)閨CB ,|n|2

3、| 13·n2C B所以 cosCB,n2,|CB|n|因此二面角 B -AM-C 的大小為 45°.2如圖,在長(zhǎng)方體ABCD -A1B1C1D1 中,已知 AB4,AD3,AA1 2, E, F 分別是棱 AB,BC 上的點(diǎn),且 EB FB 1.(1)求異面直線 EC1 與 FD1 所成角的余弦值;(2)試在面1 1 11 上確定一點(diǎn) G,使 DG平面 D1EF.ABCD解 (1)以 D 為原點(diǎn), DA, DC, DD 1分別為 x 軸, y 軸, z 軸的正向建立空間直角坐標(biāo)系,則有 D(0,0,0),D1, 1,F(xiàn)(2,(0,0,2) C (0,4,2)E(3,3,0

4、)4,0)于是 EC1(3,1,2), FD 1( 2, 4,2) 設(shè)EC1與 FD1 所成角為 , 則cos EC1·FD1 11|EC |FD |3 × 2 1× 4 2×2213 212222 2 4 22214 .21異面直線 EC1 與 FD 1 所成角的余弦值為14 .(2)因點(diǎn) G 在平面 A1B1C1D1 上,故可設(shè) G(x,y,2)DG(x,y,2), FD1(2, 4, 2),EF(1,1,0) DG·FD10,由 0DG·EF學(xué)習(xí)必備歡迎下載2x4y 4 0,2x3,得解得 xy0,2y3.2故當(dāng)點(diǎn) G 在面 A

5、1B1C1D1 上,且到 A1 D1, C1D1 距離均為 3時(shí), DGD1 EF.3某校高一、高二兩個(gè)年級(jí)進(jìn)行乒乓球?qū)官?,每個(gè)年級(jí)選出3 名學(xué)生組成代表隊(duì),比賽規(guī)則是:按“單打、雙打、單打”順序進(jìn)行三盤(pán)比賽;代表隊(duì)中每名隊(duì)員至少參加一盤(pán)比賽,但不能參加兩盤(pán)單打比賽若每盤(pán)比賽中3 4高一、高二獲勝的概率分別為 7,7.(1)按比賽規(guī)則,高一年級(jí)代表隊(duì)可以派出多少種不同的出場(chǎng)陣容?(2)若單打獲勝得 2 分,雙打獲勝得3 分,求高一年級(jí)得分的概率分布列和數(shù)學(xué)期望解 (1)先安排參加單打的隊(duì)員有 A 23種方法,再安排參加雙打的隊(duì)員有 C12種方法,所以,高一年級(jí)代表隊(duì)出場(chǎng)共有 A 23C121

6、2 種不同的陣容(2)的取值可能是 0,2,3,4,5,7.649648P(0) 343,P(2)343,P(3)343,367227P(4)343,P(5)343,P(7)343.的概率分布列為023457P649648367227343343343343343343所以 E() 0× 64 2× 96 3×48 4×36 5×727×273.3433433433433433434設(shè) m,nN* ,f(x)(12x)m(1x)n.(1)當(dāng) m n 2 011 時(shí),記 f(x)a0 a1x a2x2 a2 011x2 011,求 a0

7、a1 a2 a2 011;2(2)若 f(x)展開(kāi)式中 x 的系數(shù)是 20,則當(dāng) m,n 變化時(shí),試求 x 系數(shù)的最小值學(xué)習(xí)必備歡迎下載因?yàn)?12的系數(shù)為 2222(2)mCn2m n 20,所以 n20 2m,則 xCmCn2Cm m1 n n12124×22 2m 2m2(20 2m)(19 2m)4m 41m190.所以當(dāng) m 5, n 10 時(shí), f(x)展開(kāi)式中 x2 的系數(shù)最小,最小值為 85.已知數(shù)列n11,an 12a * n5a 滿足: a2an1(nN )2,a3 的值;(1)求 a(2)證明:不等式0anan 1 對(duì)于任意 nN* 都成立2 4(1)解 由題意,

8、得 a2 3, a35.(2)證明當(dāng) n 1 時(shí),由 (1)知 0 a1a2,不等式成立*設(shè)當(dāng) nk(kN )時(shí), 0 akak 1 成立,2ak12ak而 ak 2ak 1 ak 11ak1 2ak 1 ak1 2ak ak11 ak 11 ak12 ak 1 ak ak 11 ak1 0,所以 0ak 1 ak2,即當(dāng) nk1 時(shí),不等式成立由,得不等式 0anan1 對(duì)于任意 nN* 成立 知識(shí)排查 1求異面直線所成角一般可以通過(guò)在異面直線上選取兩個(gè)非零向量,通過(guò)求這兩個(gè)向量的夾角得出異面直線所成角,特別注意的異面直線所成角的范圍,所以一定要注意最后計(jì)算的結(jié)果應(yīng)該取正值2二面角的計(jì)算可以

9、采用平面的法向量間的夾角來(lái)實(shí)現(xiàn),進(jìn)而轉(zhuǎn)化為對(duì)平面法向量的求解最后要注意法向量如果同向的話,其夾角就是二面角平面角的補(bǔ)角,異向的話就是二面角的平面角3用平面的法向量和直線的方向向量來(lái)證明空間幾何問(wèn)題,簡(jiǎn)單快捷解題的關(guān)鍵是先定與問(wèn)題相關(guān)的平面及其法向量如果圖中的法向量沒(méi)有直接給出,那么必須先創(chuàng)設(shè)法向量學(xué)習(xí)必備歡迎下載4解決概率問(wèn)題,關(guān)鍵要能分清楚概型,正確使用好排列、組合工具,列出隨機(jī)變量 的所有取值并求出相應(yīng)的概率P(),列出分布列,尤其要揭示問(wèn)題中的隱含條件,靈活運(yùn)用“正難則反”的思考方法5求離散型隨機(jī)變量的分布列首先要明確隨機(jī)變量取哪些值,然后求取每一個(gè)值得概率,最后列成表格形式6. 要注意區(qū)別“二項(xiàng)式系數(shù)”與二項(xiàng)式展開(kāi)式中“某項(xiàng)的系數(shù)”7在解決與系數(shù)有關(guān)的問(wèn)題時(shí),常用“賦值法”,這種方法是一種重要的數(shù)學(xué)思想方法8求二項(xiàng)式展開(kāi)的某一項(xiàng)或者求滿足某些條件、具備某些性質(zhì)的項(xiàng),其基本方法是利用二項(xiàng)式的通項(xiàng)公式分析討論解之9有些數(shù)學(xué)問(wèn)題,形式上極其類似二項(xiàng)式定理的展開(kāi)式形式,因而我們要能扣住它的展開(kāi)式各項(xiàng)特征,適當(dāng)加以變化,進(jìn)而構(gòu)造出定理的相應(yīng)結(jié)構(gòu),達(dá)到解決問(wèn)題之目的10數(shù)學(xué)歸納法解題的基本步驟:(1)明確首取值 n0 并驗(yàn)證真假 (必不可少 )(2)“

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論