版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、專題8 排列組合二項(xiàng)式定理 0417打印排列組合二項(xiàng)定理 知識要點(diǎn)一、兩個(gè)原理.1. 乘法原理、加法原理.2. 可以有重復(fù)元素的排列.從m個(gè)不同元素中,每次取出n個(gè)元素,元素可以重復(fù)出現(xiàn),按照一定的順序排成一排,那么第一、第二第n位上選取元素的方法都是m個(gè),所以從m個(gè)不同元素中,每次取出n個(gè)元素可重復(fù)排列數(shù)m·m· m = mn. 例如:n件物品放入m個(gè)抽屜中,不限放法,共有多少種不同放法? (解:種)二、排列.1. 對排列定義的理解.定義:從n個(gè)不同的元素中任取m(mn)個(gè)元素,按照一定順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列.相同排列.如果;兩個(gè)排列相同
2、,不僅這兩個(gè)排列的元素必須完全相同,而且排列的順序也必須完全相同.排列數(shù).從n個(gè)不同元素中取出m(mn)個(gè)元素排成一列,稱為從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列. 從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列數(shù),用符號表示.排列數(shù)公式: 注意: 規(guī)定0! = 1 規(guī)定2. 含有可重元素的排列問題.對含有相同元素求排列個(gè)數(shù)的方法是:設(shè)重集S有k個(gè)不同元素a1,a2,.an其中限重復(fù)數(shù)為n1、n2nk,且n = n1+n2+nk , 則S的排列個(gè)數(shù)等于. 例如:已知數(shù)字3、2、2,求其排列個(gè)數(shù)又例如:數(shù)字5、5、5、求其排列個(gè)數(shù)?其排列個(gè)數(shù). 三、組合.1. 組合:從n個(gè)不同的元素中任取m(mn)個(gè)元
3、素并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合.組合數(shù)公式:兩個(gè)公式: 從n個(gè)不同元素中取出m個(gè)元素后就剩下n-m個(gè)元素,因此從n個(gè)不同元素中取出 n-m個(gè)元素的方法是一一對應(yīng)的,因此是一樣多的就是說從n個(gè)不同元素中取出n-m個(gè)元素的唯一的一個(gè)組合.(或者從n+1個(gè)編號不同的小球中,n個(gè)白球一個(gè)紅球,任取m個(gè)不同小球其不同選法,分二類,一類是含紅球選法有一類是不含紅球的選法有)根據(jù)組合定義與加法原理得;在確定n+1個(gè)不同元素中取m個(gè)元素方法時(shí),對于某一元素,只存在取與不取兩種可能,如果取這一元素,則需從剩下的n個(gè)元素中再取m-1個(gè)元素,所以有C,如果不取這一元素,則需從剩余n個(gè)元素中取
4、出m個(gè)元素,所以共有C種,依分類原理有. 排列與組合的聯(lián)系與區(qū)別.聯(lián)系:都是從n個(gè)不同元素中取出m個(gè)元素.區(qū)別:前者是“排成一排”,后者是“并成一組”,前者有順序關(guān)系,后者無順序關(guān)系.幾個(gè)常用組合數(shù)公式Cm+n+1m+1=Cnm+Cm+1m常用的證明組合等式方法例.i. 裂項(xiàng)求和法. 如:(利用)ii. 導(dǎo)數(shù)法. iii. 數(shù)學(xué)歸納法. iv. 倒序求和法.v. 遞推法(即用遞推)如:.vi. 構(gòu)造二項(xiàng)式. 如: 證明:這里構(gòu)造二項(xiàng)式其中的系數(shù),左邊為,而右邊四、排列、組合綜合.1. I. 排列、組合問題幾大解題方法及題型:直接法. 排除法.捆綁法:在特定要求的條件下,將幾個(gè)相關(guān)元素當(dāng)作一個(gè)元
5、素來考慮,待整體排好之后再考慮它們“局部”的排列.它主要用于解決“元素相鄰問題”,例如,一般地,n個(gè)不同元素排成一列,要求其中某個(gè)元素必相鄰的排列有個(gè).其中是一個(gè)“整體排列”,而則是“局部排列”.又例如有n個(gè)不同座位,A、B兩個(gè)不能相鄰,則有排列法種數(shù)為An-nAn-1n-1. A22 有n件不同商品,若其中A、B排在一起有.有n件不同商品,若其中有二件要排在一起有.注:區(qū)別在于是確定的座位,有種;而的商品地位相同,是從n件不同商品任取的2個(gè),有不確定性.插空法:先把一般元素排列好,然后把待定元素插排在它們之間或兩端的空檔中,此法主要解決“元素不相鄰問題”.例如:n個(gè)元素全排列,其中m個(gè)元素互
6、不相鄰,不同的排法種數(shù)為多少?(插空法),當(dāng)n m+1m, 即m時(shí)有意義.占位法:從元素的特殊性上講,對問題中的特殊元素應(yīng)優(yōu)先排列,然后再排其他一般元素;從位置的特殊性上講,對問題中的特殊位置應(yīng)優(yōu)先考慮,然后再排其他剩余位置.即采用“先特殊后一般”的解題原則.調(diào)序法:當(dāng)某些元素次序一定時(shí),可用此法.解題方法是:先將n個(gè)元素進(jìn)行全排列有種,個(gè)元素的全排列有種,由于要求m個(gè)元素次序一定,因此只能取其中的某一種排法,可以利用除法起到去調(diào)序的作用,即若n個(gè)元素排成一列,其中m個(gè)元素次序一定,共有種排列方法.例如:n個(gè)元素全排列,其中m個(gè)元素順序不變,共有多少種不同的排法?解法一:(逐步插空法)(m+1
7、)(m+2)n = n!/ m?。唤夥ǘ海ū壤峙浞ǎ?平均法:若把kn個(gè)不同元素平均分成k組,每組n個(gè),共有.例如:從1,2,3,4中任取2個(gè)元素將其平均分成2組有幾種分法?有(平均分組就用不著管組與組之間的順序問題了)又例如將200名運(yùn)動(dòng)員平均分成兩組,其中兩名種子選手必在一組的概率是多少?()注意:分組與插空綜合. 例如:n個(gè)元素全排列,其中某m個(gè)元素互不相鄰且順序不變,共有多少種排法?有,當(dāng)n m+1 m, 即m時(shí)有意義.隔板法:常用于解正整數(shù)解組數(shù)的問題.例如:的正整數(shù)解的組數(shù)就可建立組合模型將12個(gè)完全相同的球排成一列,在它們之間形成11個(gè)空隙中任選三個(gè)插入3塊摸板,把球分成4個(gè)
8、組.每一種方法所得球的數(shù)目依次為顯然,故()是方程的一組解.反之,方程的任何一組解,對應(yīng)著惟一的一種在12個(gè)球之間插入隔板的方式(如圖 所示)故方程的解和插板的方法一一對應(yīng). 即方程的解的組數(shù)等于插隔板的方法數(shù).注意:若為非負(fù)數(shù)解的x個(gè)數(shù),即用中等于,有,進(jìn)而轉(zhuǎn)化為求a的正整數(shù)解的個(gè)數(shù)為 .定位問題:從n個(gè)不同元素中每次取出k個(gè)不同元素作排列規(guī)定某r個(gè)元素都包含在內(nèi),并且都排在某r個(gè)指定位置則有.例如:從n個(gè)不同元素中,每次取出m個(gè)元素的排列,其中某個(gè)元素必須固定在(或不固定在)某一位置上,共有多少種排法?固定在某一位置上:;不在某一位置上:或(一類是不取出特殊元素a,有,一類是取特殊元素a,
9、有從m-1個(gè)位置取一個(gè)位置,然后再從n-1個(gè)元素中取m-1,這與用插空法解決是一樣的)指定元素排列組合問題. i. 從n個(gè)不同元素中每次取出k個(gè)不同的元素作排列(或組合),規(guī)定某r個(gè)元素都包含在內(nèi) 。先C后A策略,排列;組合.ii. 從n個(gè)不同元素中每次取出k個(gè)不同元素作排列(或組合),規(guī)定某r個(gè)元素都不包含在內(nèi)。先C后A策略,排列;組合.iii 從n個(gè)不同元素中每次取出k個(gè)不同元素作排列(或組合),規(guī)定每個(gè)排列(或組合)都只包含某r個(gè)元素中的s個(gè)元素。先C后A策略,排列;組合. II. 排列組合常見解題策略:特殊元素優(yōu)先安排策略;合理分類與準(zhǔn)確分步策略;排列、組合混合問題先選后排的策略(處理
10、排列組合綜合性問題一般是先選元素,后排列);正難則反,等價(jià)轉(zhuǎn)化策略;相鄰問題插空處理策略;不相鄰問題插空處理策略;定序問題除法處理策略;分排問題直排處理的策略;“小集團(tuán)”排列問題中先整體后局部的策略;構(gòu)造模型的策略.2. 組合問題中分組問題和分配問題.均勻不編號分組:將n個(gè)不同元素分成不編號的m組,假定其中r組元素個(gè)數(shù)相等,不管是否分盡,其分法種數(shù)為(其中A為非均勻不編號分組中分法數(shù)).如果再有K組均勻分組應(yīng)再除以.(我以列說明:6本書平均分給3個(gè)人,只需在6本書里任意分成3份后分給三人。而6本書分給甲乙丙三人,除從6本書取出后,還要排列就是均勻編號分組.6本書安3,2,1,本分給三人就是非均
11、勻不編號分組這三人是任意不排列的)例:10人分成三組,各組元素個(gè)數(shù)為2、4、4,其分法種數(shù)為.若分成六組,各組人數(shù)分別為1、1、2、2、2、2,其分法種數(shù)為非均勻編號分組: n個(gè)不同元素分組,各組元素?cái)?shù)目均不相等,且考慮各組間的順序,其分法種數(shù)為例:10人分成三組,各組人數(shù)分別為2、3、5,去參加不同的勞動(dòng),其安排方法為:種.若從10人中選9人分成三組,人數(shù)分別為2、3、4,參加不同的勞動(dòng),則安排方法有種均勻編號分組:n個(gè)不同元素分成m組,其中r組元素個(gè)數(shù)相同且考慮各組間的順序,其分法種數(shù)為.例:10人分成三組,人數(shù)分別為2、4、4,參加三種不同勞動(dòng),分法種數(shù)為 非均勻不編號分組:將n個(gè)不同元
12、素分成不編號的m組,每組元素?cái)?shù)目均不相同,且不考慮各組間順序,不管是否分盡,其分法種數(shù)為例:10人分成三組,每組人數(shù)分別為2、3、5,其分法種數(shù)為若從10人中選出6人分成三組,各組人數(shù)分別為1、2、3,其分法種數(shù)為.五、二項(xiàng)式定理.1. 二項(xiàng)式定理:.展開式具有以下特點(diǎn): 項(xiàng)數(shù):共有項(xiàng); 系數(shù):依次為組合數(shù) 每一項(xiàng)的次數(shù)是一樣的,即為n次,展開式依a的降幕排列,b的升幕排列展開.二項(xiàng)展開式的通項(xiàng).展開式中的第項(xiàng)為:.二項(xiàng)式系數(shù)的性質(zhì).在二項(xiàng)展開式中與首未兩項(xiàng)“等距離”的兩項(xiàng)的二項(xiàng)式系數(shù)相等;二項(xiàng)展開式的中間項(xiàng)二項(xiàng)式系數(shù)最大.I. 當(dāng)n是偶數(shù)時(shí),中間項(xiàng)是第項(xiàng),它的二項(xiàng)式系數(shù)最大;II. 當(dāng)n是奇
13、數(shù)時(shí),中間項(xiàng)為兩項(xiàng),即第項(xiàng)和第項(xiàng),它們的二項(xiàng)式系數(shù)最大.系數(shù)和: 附:一般來說為常數(shù))在求系數(shù)最大的項(xiàng)或最小的項(xiàng)時(shí)均可直接根據(jù)性質(zhì)二求解. 當(dāng)時(shí),一般采用解不等式組的系數(shù)或系數(shù)的絕對值)的辦法來求解.如何來求展開式中含的系數(shù)呢?其中且把視為二項(xiàng)式,先找出含有的項(xiàng),另一方面在中含有的項(xiàng)為,故在中含的項(xiàng)為.其系數(shù)為.高考提高練習(xí):在二項(xiàng)式的展開式中,含的項(xiàng)的系數(shù)是( ) A B C D 答案 B 解析 對于,對于,則的項(xiàng)的系數(shù)是若為有理數(shù)),則 ( ) A45 B55 C70 D80答案 C解析 本題主要考查二項(xiàng)式定理及其展開式. 屬于基礎(chǔ)知識、基本運(yùn)算的考查. , 由已知,得,.故選C.若,則的
14、值為 A. 2B.0 C. D. 答案 C 解析 由題意容易發(fā)現(xiàn),則, 同理可以得出,亦即前2008項(xiàng)和為0, 則原式= 故選C.的展開式的常數(shù)項(xiàng)是 (用數(shù)字作答) 答案 20解析 ,令,得 故展開式的常數(shù)項(xiàng)為在的展開式中,的系數(shù)為_7_(用數(shù)字作答)答案 7 解析 由條件易知展開式中項(xiàng)的系數(shù)分別是,即所求系數(shù)是)的展開式中的系數(shù)為 6 。解:,只需求展開式中的含項(xiàng)的系數(shù): 高考解答題集錦第二期(1) 立體幾何(1)(本小題滿分14分) 如圖,在直三棱柱中,、分別是、的中 點(diǎn),點(diǎn)在上,。 求證:(1)EF平面ABC; (2)平面平面.【解析】 本小題主要考查直線與平面、平面與平面得位置關(guān)系,考
15、查空間想象能力、推理論證能力。滿分14分。(2)(本小題滿分14分)如圖6,已知正方體的棱長為2,點(diǎn)是正方形的中心,點(diǎn)、分別是棱的中點(diǎn)設(shè)點(diǎn)分別是點(diǎn),在平面內(nèi)的正投影(1)求以為頂點(diǎn),以四邊形在平面內(nèi)的正投影為底面邊界的棱錐的體積;(2)證明:直線平面;(3)求異面直線所成角的正弦值.解:(1)依題作點(diǎn)、在平面內(nèi)的正投影、,則、分別為、的中點(diǎn),連結(jié)、,則所求為四棱錐的體積,其底面面積為 ,又面,.(2)以為坐標(biāo)原點(diǎn),、所在直線分別作軸,軸,軸,得、,又,則,即,又,平面.(3),則,設(shè)異面直線所成角為,則.(本題滿分15分)如圖,平面平面,是以為斜邊的等腰直角三角形,分別為,的中點(diǎn), (I)設(shè)是
16、的中點(diǎn),證明:平面; (II)證明:在內(nèi)存在一點(diǎn),使平面,并求點(diǎn)到,的距離證明:(I)如圖,連結(jié)OP,以O(shè)為坐標(biāo)原點(diǎn),分別以O(shè)B、OC、OP所在直線為軸,軸,軸,建立空間直角坐標(biāo)系O, 則,由題意得,因,因此平面BOE的法向量為,得,又直線不在平面內(nèi),因此有平面(II)設(shè)點(diǎn)M的坐標(biāo)為,則,因?yàn)槠矫鍮OE,所以有,因此有,即點(diǎn)M的坐標(biāo)為,在平面直角坐標(biāo)系中,的內(nèi)部區(qū)域滿足不等式組,經(jīng)檢驗(yàn),點(diǎn)M的坐標(biāo)滿足上述不等式組,所以在內(nèi)存在一點(diǎn),使平面,由點(diǎn)M的坐標(biāo)得點(diǎn)到,的距離為 在數(shù)列中,(I)設(shè),求數(shù)列的通項(xiàng)公式(II)求數(shù)列的前項(xiàng)和分析:(I)由已知有利用累差迭加即可求出數(shù)列的通項(xiàng)公式: ()(II)由(I)知,=而,又是一個(gè)典型的錯(cuò)位相減法模型,易得 =評析:本題考查構(gòu)造新數(shù)列和利用錯(cuò)位相減法求前n項(xiàng)和,一改往年的將數(shù)列結(jié)合不等式放縮法問題作為押軸題的命題模式。具有讓考生和一線教師重視教材和
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)人才2024年薪金聘用協(xié)議書版
- 二零二五版冷鏈物流車輛貨物運(yùn)輸安全協(xié)議2篇
- 二零二五年藝術(shù)品搬運(yùn)運(yùn)輸服務(wù)合同3篇
- 二零二五版數(shù)字經(jīng)濟(jì)產(chǎn)業(yè)發(fā)展合同范本2篇
- 2024施工合同匯集
- 二零二五年度鋼板租賃與節(jié)能減排服務(wù)協(xié)議3篇
- 個(gè)性化旅游顧問服務(wù)協(xié)議2024版版A版
- 2024版產(chǎn)品銷售協(xié)議6篇
- 二零二五年度高科技產(chǎn)業(yè)合伙人分家協(xié)議書3篇
- 二零二五年度智能工廠安全生產(chǎn)服務(wù)外包合同2篇
- 《用銳角三角函數(shù)解決問題(3)》參考課件
- 房地產(chǎn)營銷策劃 -佛山龍灣壹號學(xué)區(qū)房項(xiàng)目推廣策略提案方案
- 產(chǎn)品共同研發(fā)合作協(xié)議范本5篇
- 風(fēng)水學(xué)的基礎(chǔ)知識培訓(xùn)
- 吸入療法在呼吸康復(fù)應(yīng)用中的中國專家共識2022版
- 1-35kV電纜技術(shù)參數(shù)表
- 信息科技課程標(biāo)準(zhǔn)測(2022版)考試題庫及答案
- 施工組織設(shè)計(jì)方案針對性、完整性
- 2002版干部履歷表(貴州省)
- DL∕T 1909-2018 -48V電力通信直流電源系統(tǒng)技術(shù)規(guī)范
評論
0/150
提交評論