版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、2.3.2平面與平面垂直的判定【課時目標】1掌握二面角的概念,二面角的平面角的概念,會求簡單的二面角的大小2掌握兩個平面互相垂直的概念,并能利用判定定理判定兩個平面垂直1二面角:從一條直線出發(fā)的_所組成的圖形叫做二面角_叫做二面角的棱_叫做二面角的面2二面角的平面角如圖:在二面角l的棱l上任取一點O,以點O為_,在半平面和內分別作垂直于棱l的射線OA和OB,則射線OA和OB構成的_叫做二面角的平面角3平面與平面的垂直(1)定義:如果兩個平面相交,且它們所成的二面角是_,就說這兩個平面互相垂直(2)面面垂直的判定定理文字語言:一個平面過另一個平面的_,則這兩個平面垂直符號表示:一、選擇題1下列命
2、題:兩個相交平面組成的圖形叫做二面角;異面直線a、b分別和一個二面角的兩個面垂直,則a、b組成的角與這個二面角的平面角相等或互補;二面角的平面角是從棱上一點出發(fā),分別在兩個面內作射線所成角的最小角;二面角的大小與其平面角的頂點在棱上的位置沒有關系其中正確的是()ABCD2下列命題中正確的是()A平面和分別過兩條互相垂直的直線,則B若平面內的一條直線垂直于平面內兩條平行線,則C若平面內的一條直線垂直于平面內兩條相交直線,則D若平面內的一條直線垂直于平面內無數(shù)條直線,則3設有直線M、n和平面、,則下列結論中正確的是()若Mn,n,M,則;若Mn,M,n,則;若M,n,Mn,則ABCD4過兩點與一個
3、已知平面垂直的平面()A有且只有一個B有無數(shù)個C有且只有一個或無數(shù)個D可能不存在5在邊長為1的菱形ABCD中,ABC60°,把菱形沿對角線AC折起,使折起后BD,則二面角BACD的余弦值為()ABCD6在正四面體PABC中,D、E、F分別是AB、BC、CA的中點,下面四個結論中不成立的是()ABC面PDFBDF面PAEC面PDF面ABCD面PAE面ABC二、填空題7過正方形ABCD的頂點A作線段AP平面ABCD,且APAB,則平面ABP與平面CDP所成的二面角的度數(shù)是_8如圖所示,已知PA矩形ABCD所在的平面,圖中互相垂直的平面有_對9已知、是兩個不同的平面,M、n是平面及之外的兩
4、條不同直線,給出四個論斷:Mn;n;M以其中三個論斷作為條件,余下一個論斷作為結論,寫出你認為正確的一個命題:_三、解答題10如圖所示,在空間四邊形ABCD中,ABBC,CDDA,E、F、G分別為CD、DA和對角線AC的中點求證:平面BEF平面BGD11如圖所示,四棱錐PABCD的底面ABCD是邊長為1的菱形,BCD60°,E是CD的中點,PA底面ABCD,PA(1)證明:平面PBE平面PAB;(2)求二面角ABEP的大小能力提升12如圖,在直三棱柱ABCA1B1C1中,E、F分別是A1B、A1C的中點,點D在B1C1上,A1DB1C求證:(1)EF平面ABC;(2)平面A1FD平面
5、BB1C1C13如圖,在三棱錐PABC中,PA底面ABC,PAAB,ABC60°,BCA90°,點D、E分別在棱PB、PC上,且DEBC(1)求證:BC平面PAC(2)是否存在點E使得二面角ADEP為直二面角?并說明理由1證明兩個平面垂直的主要途徑(1)利用面面垂直的定義,即如果兩個相交平面的交線與第三個平面垂直,又這兩個平面與第三個平面相交所得的兩條交線互相垂直,就稱這兩個平面互相垂直(2)面面垂直的判定定理,即如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直2利用面面垂直的判定定理證明面面垂直時的一般方法:先從現(xiàn)有的直線中尋找平面的垂線,若圖中存在這樣的直線
6、,則可通過線面垂直來證明面面垂直;若圖中不存在這樣的直線,則可通過作輔助線來解決,而作輔助線則應有理論依據(jù)并有利于證明,不能隨意添加3證明兩個平面垂直,通常是通過證明線線垂直線面垂直面面垂直來實現(xiàn)的,因此,在關于垂直問題的論證中要注意線線垂直、線面垂直、面面垂直的相互轉化每一垂直的判定都是從某一垂直開始轉向另一垂直,最終達到目的的232平面與平面垂直的判定答案知識梳理1兩個半平面這條直線這兩個半平面2垂足AOB3(1)直二面角(2)垂線a作業(yè)設計1B不符合二面角定義,從運動的角度演示可知,二面角的平面角不是最小角故選B2C3B錯,當兩平面不垂直時,在一個平面內可以找到無數(shù)條直線與兩個平面的交線
7、垂直4C當兩點連線與平面垂直時,有無數(shù)個平面與已知平面垂直,當兩點連線與平面不垂直時,有且只有一個平面與已知平面垂直5B如圖所示,由二面角的定義知BOD即為二面角的平面角DOOBBD,BOD60°6C如圖所示,BCDF,BC平面PDFA正確由BCPE,BCAE,BC平面PAEDF平面PAEB正確平面ABC平面PAE(BC平面PAE)D正確745°解析可將圖形補成以AB、AP為棱的正方體,不難求出二面角的大小為45°85解析由PA面ABCD知面PAD面ABCD,面PAB面ABCD,又PAAD,PAAB且ADAB,DAB為二面角DPAB的平面角,面DPA面PAB又BC
8、面PAB,面PBC面PAB,同理DC面PDA,面PDC面PDA9(或)10證明ABBC,CDAD,G是AC的中點,BGAC,DGAC,AC平面BGD又EFAC,EF平面BGDEF平面BEF,平面BEF平面BGD11(1)證明如圖所示,連接BD,由ABCD是菱形且BCD60°知,BCD是等邊三角形因為E是CD的中點,所以BECD又ABCD,所以BEAB又因為PA平面ABCD,BE平面ABCD,所以PABE而PAABA,因此BE平面PAB又BE平面PBE,所以平面PBE平面PAB(2)解由(1)知,BE平面PAB,PB平面PAB,所以PBBE又ABBE,所以PBA是二面角ABEP的平面角在RtPAB中,tanPBA,則PBA60°故二面角ABEP的大小是60°12證明(1)由E、F分別是A1B、A1C的中點知EFBC因為EF平面ABCBC平面ABC所以EF平面ABC(2)由三棱柱ABCA1B1C1為直三棱柱知CC1平面A1B1C1又A1D平面A1B1C1,故CC1A1D又因為A1DB1C,CC1B1CC,故A1D平面BB1C1C,又A1D平面A1FD,所以平面A1FD平面BB1C1C13(1)證明PA底面ABC,PABC又BCA90°,ACBC又ACPAA,BC平面PAC(2)解DEBC,又由(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025中國鐵塔校園招聘高頻重點提升(共500題)附帶答案詳解
- 2025中國電信集團限公司云網(wǎng)運營部社會招聘高頻重點提升(共500題)附帶答案詳解
- 2025中國大唐集團限公司華北電力運營分公司招聘(內)高頻重點提升(共500題)附帶答案詳解
- 2025下半年湖南益陽市資陽區(qū)事業(yè)單位招聘工作人員16人高頻重點提升(共500題)附帶答案詳解
- 2025下半年浙江湖州經(jīng)開投資發(fā)展集團限公司及其下屬子公司招聘18人高頻重點提升(共500題)附帶答案詳解
- 2025下半年廣東潮州饒平縣衛(wèi)健系統(tǒng)事業(yè)單位招聘206人高頻重點提升(共500題)附帶答案詳解
- 2025下半年四川省大英縣事業(yè)單位招聘80人歷年高頻重點提升(共500題)附帶答案詳解
- 2025上海四團鎮(zhèn)鎮(zhèn)屬企業(yè)工作人員招聘26人高頻重點提升(共500題)附帶答案詳解
- 2025上半年廣東省佛山市北滘鎮(zhèn)鎮(zhèn)屬單位招聘24人歷年高頻重點提升(共500題)附帶答案詳解
- 2025上半年四川自貢市大安區(qū)事業(yè)單位招聘53人歷年高頻重點提升(共500題)附帶答案詳解
- 2023-2024學年廣東省深圳市光明區(qū)高二(上)期末地理試卷
- 【8地RJ期末】安徽省蕪湖市弋江區(qū)2023-2024學年八年級上學期期末考試地理試卷(含解析)
- 養(yǎng)老院安全巡查記錄制度
- 2024年度三方新能源汽車充電樁運營股權轉讓協(xié)議3篇
- 模擬集成電路設計知到智慧樹章節(jié)測試課后答案2024年秋廣東工業(yè)大學
- 世界各大洲國家中英文、區(qū)號、首都大全
- 惡性腫瘤中醫(yī)中藥治療
- 期末(試題)-2024-2025學年人教PEP版英語六年級上冊
- 2024年公安基礎知識考試題庫及答案
- 三創(chuàng)賽獲獎-非遺文化創(chuàng)新創(chuàng)業(yè)計劃書
- 教你成為歌唱達人智慧樹知到期末考試答案2024年
評論
0/150
提交評論