版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、 探索三角形全等的條件探索三角形全等的條件回顧與思考 到目前為止,我們已學(xué)過哪些方法判定到目前為止,我們已學(xué)過哪些方法判定兩三角形全等?兩三角形全等?答:邊邊邊(答:邊邊邊(SSSSSS)角邊角()角邊角(ASAASA)角)角角邊(角邊(AASAAS)根據(jù)探索三角形全等的條件,至少需要三根據(jù)探索三角形全等的條件,至少需要三個條件,除了上述三種情況外,還有哪種個條件,除了上述三種情況外,還有哪種情況?情況?答:兩邊一角相等答:兩邊一角相等那么有幾種可能的情況呢?那么有幾種可能的情況呢?答:兩邊及夾角或兩邊及其一邊的對角答:兩邊及夾角或兩邊及其一邊的對角(1)如果“兩邊及一角”條件中的角是兩邊的夾
2、角,比如三角形兩邊分別為2.5cm,3.5cm,它們所夾的角為40 ,你能畫出這個三角形嗎?你畫的三角形與同伴畫的一定全等嗎?3.5cm2.5cm4040ABC3.5cm2.5cm40DEF1. 畫畫MA N = AABCMNA 2. 在射線在射線 A M ,A N 上分別取上分別取 A B = AB , A C = AC .B C3. 連接連接 B C ,得,得 A B C .已知已知ABC是任意一個三角形,是任意一個三角形,畫畫A BC 使使A = A, A B =AB, A C =AC.畫法:畫法:邊角邊公理邊角邊公理 有兩邊和它們的有兩邊和它們的夾角夾角對應(yīng)相等的對應(yīng)相等的 兩個三角形
3、全等兩個三角形全等. .可以簡寫成可以簡寫成 “邊角邊邊角邊” 或或“ SAS ” 以以2.5cm,3.5cm為三角形的兩邊,長為三角形的兩邊,長度為度為2.5cm的邊所對的角為的邊所對的角為4040 ,情況,情況又怎樣?動手畫一畫,你發(fā)現(xiàn)了什么?又怎樣?動手畫一畫,你發(fā)現(xiàn)了什么?ABCDEF2.5cm3.5cm404040403.5cm2.5cm結(jié)論:兩邊及其一邊所對的角相等,結(jié)論:兩邊及其一邊所對的角相等,兩個三角形兩個三角形不一定不一定全等全等1.1.在下列圖中找出全等三角形,并把它們用在下列圖中找出全等三角形,并把它們用符號寫出來符號寫出來. .?308 cm9 cm?308 cm8
4、cm8 cm5 cm30?8 cm5 cm308 cm?5 cm8 cm5 cm?308 cm9 cm?308 cm8 cm練習(xí)一練習(xí)一分別找出各題中的全等三角形分別找出各題中的全等三角形ABC40 40 DEF(1)DCAB(2)ABCABCEFD EFD 根據(jù)根據(jù)“SAS”SAS”ADCADCCBA (SAS)CBA (SAS)BCDEA如圖,已知如圖,已知ABAC,ADAE。求證:求證:BCCEABAD證明:在證明:在ABD和和ACE中中 (已知)(已知)(公共角)(公共角)(已知)(已知)AEADAAACABABD ACE(SAS)BC(全等三角形(全等三角形對應(yīng)角相等)對應(yīng)角相等)F
5、EDCBA如圖,如圖,BE,ABEF,BDEC,那么,那么ABC與與FED全等嗎?為什么?全等嗎?為什么?解:全等。解:全等。BD=EC(已知)(已知)BDCDECCD。即。即BCED (已證)(已證)(已知)(已知)(已知)(已知)EDBCCBEFAB在在ABC與與FED中中ABC FED(SAS)ACFD嗎?為什么?嗎?為什么?12()()34()()ACFD(內(nèi)錯角(內(nèi)錯角相等,兩直線平行相等,兩直線平行4321 小明的設(shè)計方案:先在池塘旁取一個小明的設(shè)計方案:先在池塘旁取一個能直接到達(dá)能直接到達(dá)A A和和B B處的點(diǎn)處的點(diǎn)C C,連結(jié),連結(jié)ACAC并延長并延長至至D D點(diǎn),使點(diǎn),使AC
6、=DCAC=DC,連結(jié),連結(jié)BCBC并延長至并延長至E E點(diǎn),點(diǎn),使使BC=ECBC=EC,連結(jié),連結(jié)CDCD,用米尺測出,用米尺測出DEDE的長,的長,這個長度就等于這個長度就等于A A,B B兩點(diǎn)的距離。請你說兩點(diǎn)的距離。請你說明理由。明理由。 AC=DC ACB=DCE BC=EC ACB DCE(SAS) AB=DEECBAD如圖線段如圖線段AB是一個池塘的長度,是一個池塘的長度,現(xiàn)在想測量這個池塘的長度,在現(xiàn)在想測量這個池塘的長度,在水上測量不方便,你有什么好的水上測量不方便,你有什么好的方法較方便地把池塘的長度測量方法較方便地把池塘的長度測量出來嗎?想想看。出來嗎?想想看。1、今天
7、我們學(xué)習(xí)哪種方法判定兩三角、今天我們學(xué)習(xí)哪種方法判定兩三角形全等?形全等? 答:邊角邊(答:邊角邊(SASSAS) 2 2、通過這節(jié)課,判定三角形全等的條、通過這節(jié)課,判定三角形全等的條件有哪些?件有哪些?答:答:SSSSSS、SASSAS、ASAASA、AASAAS3 3、在這四種說明三角形全等的條件中,、在這四種說明三角形全等的條件中,你發(fā)現(xiàn)了什么?你發(fā)現(xiàn)了什么?答:至少有一個條件:邊相等答:至少有一個條件:邊相等“邊邊角”不能判定兩個三角形全等CABDO2.在下列推理中填寫需要補(bǔ)在下列推理中填寫需要補(bǔ)充的條件,使結(jié)論成立:充的條件,使結(jié)論成立:(1)如圖,在如圖,在AOB和和DOC中中A
8、O=DO(已知已知)_=_( )BO=CO(已知已知) AOB DOC( ) AOB DOC對頂角相等對頂角相等SAS(2).如圖,在AEC和ADB中,_=_(已知已知)A= A( 公共角公共角)_=_(已知已知) AEC ADB( )AEBDCAEADACABSAS例例1 1已知已知: 如圖如圖,AC=AD ,CAB=DAB. 求證求證: ACB ADB.ABCD證明證明:ACB ADB這兩個條件夠嗎這兩個條件夠嗎?例例1 1已知已知: 如圖如圖,AC=AD ,CAB=DAB. 求證求證: ACB ADB.ABCD證明證明:ACB ADB.這兩個條件夠嗎這兩個條件夠嗎?還要什么條件呢還要什么
9、條件呢?例例1 1已知已知: 如圖如圖,AC=AD ,CAB=DAB. 求證求證: ACB ADB.ABCD證明證明:ACB ADB.這兩個條件夠嗎這兩個條件夠嗎?還要什么條件呢還要什么條件呢?還要一條邊還要一條邊例例1 1已知已知: 如圖如圖,AC=AD ,CAB=DAB. 求證求證: ACB ADB.ABCD它既是ACB的一條邊的一條邊,看看線段又是的一條邊的一條邊例例1 1已知已知: 如圖如圖,AC=AD ,CAB=DAB. 求證求證: ACB ADB.ABCD證明證明:在在ACB 和和 ADB中中 AC = A D CAB=DAB A B = A B (公共邊)公共邊)ACB ADB(
10、SAS)證明三角形全等的步驟:證明三角形全等的步驟:1.1.寫出在哪兩個三角形中證明全等。寫出在哪兩個三角形中證明全等。(注意把表示對應(yīng)頂點(diǎn)的字母寫在對(注意把表示對應(yīng)頂點(diǎn)的字母寫在對應(yīng)的位置上)應(yīng)的位置上). .2.2.按邊、角、邊的順序列出三個條件,按邊、角、邊的順序列出三個條件,用大括號合在一起用大括號合在一起. .3.3.寫出結(jié)論寫出結(jié)論. .每步要有推理的依據(jù)每步要有推理的依據(jù). .3.3.已知:如圖,已知:如圖,AB = AC AB = AC ,AD = AD = AE .AE . 求證:求證: ABE ABE ACD ACD. .證明證明: 在在ABE ABE 和和ACD ACD
11、 中,中,AB = AC,AD = AE,A = A(公共角),(公共角), ABE ACD(SAS).BEACD1.若若AB=AC,則添加什么條件可得,則添加什么條件可得ABD ACD?ABD ACDAD=ADAB=ACABDCBAD= CADSAS練習(xí)二練習(xí)二2.已知如圖,點(diǎn)已知如圖,點(diǎn)D 在在AB上,點(diǎn)上,點(diǎn)E在在AC上,上,BE與與CD交于點(diǎn)交于點(diǎn)O,ABE ACDSASAB=ACA= AAD=AE要證要證ABE ACD需添加什么條件需添加什么條件?BEA ACDO2.已知如圖,點(diǎn)已知如圖,點(diǎn)D 在在AB上,點(diǎn)上,點(diǎn)E在在AC上,上,BE與與CD交于點(diǎn)交于點(diǎn)O,SASOB=OC BOD
12、= COEOD=OE要證要證BOD COE需添加什么條件需添加什么條件?BEA ACDOBOD COE3.如圖,要證如圖,要證ACB ADB ,至少選,至少選用哪些條件可用哪些條件可ABCDACB ADBSAS證得證得ACB ADBAB=AB CAB= DAB AC=AD3.如圖,要證如圖,要證ACB ADB ,至少選,至少選用哪些條件可用哪些條件可ABCDACB ADBSAS證得證得ACB ADBAB=AB CBA= DBA BC=BD課堂小結(jié)課堂小結(jié)1.1.邊角邊公理:有兩邊和它們的邊角邊公理:有兩邊和它們的_對應(yīng)相等的對應(yīng)相等的 兩個三角形全等(兩個三角形全等(SASSAS)夾角2.邊角邊公理的發(fā)現(xiàn)過程所用到的數(shù)學(xué)方法(包括畫邊角邊公理的發(fā)現(xiàn)過程所用到的數(shù)學(xué)方法(包括畫 圖、猜想、分析、歸納等圖、猜想、分析、歸納等.)3.邊角邊公理的應(yīng)用中所用到的數(shù)學(xué)方法邊角邊公理的應(yīng)用中所用到的數(shù)學(xué)方法: 證明線段(或角相等)證明線段(或角相等) 證明線段(或角)證明線段(或角)所在的兩個三角形全等所在的兩個三角形全等.轉(zhuǎn)化轉(zhuǎn)化1. 證明兩個三角形全等所需的條件應(yīng)按證明兩個三角形全等所需的條件應(yīng)按對應(yīng)邊、對應(yīng)邊、對應(yīng)角、對應(yīng)角、對應(yīng)邊順序書寫對應(yīng)邊順序書
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 有關(guān)光纖特性的課程設(shè)計
- 直流可逆調(diào)速課程設(shè)計
- 學(xué)前班課程設(shè)計
- 燕山大學(xué)填料塔課程設(shè)計
- 2025版網(wǎng)絡(luò)游戲運(yùn)營許可及分成合同3篇
- 2025版駕駛員安全教育與風(fēng)險管理合同3篇
- 二零二五年大型活動贊助與廣告合作合同3篇
- 二零二五年個人股權(quán)無償轉(zhuǎn)讓與公司收購與重組合同3篇
- 2025版兼職外教英語教育機(jī)構(gòu)勞動合同6篇
- 2025版軌道交通工程招投標(biāo)及合同風(fēng)險管理手冊3篇
- 物業(yè)工程維修作業(yè)培訓(xùn)課件
- 數(shù)值分析上機(jī)題(matlab版)(東南大學(xué))
- 煤化工未來發(fā)展趨勢報告
- 安置幫教業(yè)務(wù)培訓(xùn)
- 天津市部分重點(diǎn)中學(xué)高一上學(xué)期期末考試數(shù)學(xué)試卷及答案(共四套)
- 鎮(zhèn)江市2023-2024學(xué)年九年級上學(xué)期期末英語試卷(含答案解析)
- 醫(yī)院禁毒行動方案
- 學(xué)生公寓物業(yè)服務(wù)方案投標(biāo)方案(技術(shù)方案)
- 水上交通安全生產(chǎn)培訓(xùn)
- 加強(qiáng)老舊小區(qū)物業(yè)管理的思考
- 超聲影像學(xué)基礎(chǔ)
評論
0/150
提交評論