![維隨機(jī)變量及其分布_第1頁](http://file3.renrendoc.com/fileroot_temp3/2021-12/16/f47af6dd-7cc0-4e29-acd3-ecf04701d1a1/f47af6dd-7cc0-4e29-acd3-ecf04701d1a11.gif)
![維隨機(jī)變量及其分布_第2頁](http://file3.renrendoc.com/fileroot_temp3/2021-12/16/f47af6dd-7cc0-4e29-acd3-ecf04701d1a1/f47af6dd-7cc0-4e29-acd3-ecf04701d1a12.gif)
![維隨機(jī)變量及其分布_第3頁](http://file3.renrendoc.com/fileroot_temp3/2021-12/16/f47af6dd-7cc0-4e29-acd3-ecf04701d1a1/f47af6dd-7cc0-4e29-acd3-ecf04701d1a13.gif)
![維隨機(jī)變量及其分布_第4頁](http://file3.renrendoc.com/fileroot_temp3/2021-12/16/f47af6dd-7cc0-4e29-acd3-ecf04701d1a1/f47af6dd-7cc0-4e29-acd3-ecf04701d1a14.gif)
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、.薁袁肇芄薇袀腿膇蒂衿衿莂莈衿羈膅蚇袈肄莁薃袇膆膄葿羆裊荿蒞羅羈膂蚄羄膀莇蝕羃節(jié)芀薆羃羂蒆蒂蕿肄羋莈薈膇蒄蚆薇袆芇薂蚇罿蒂蒈蚆肁芅莄蚅芃肈螃蚄羃莃蠆蚃肅膆薅螞膈莂蒁蟻袇膄莇蟻羀莀蚅螀肂膃薁蝿膄莈蕆螈襖膁蒃螇肆蒆荿螆膈艿蚈螅袈蒅薄螅羀羋蒀螄肅蒃莆袃膅芆蚅袂裊聿薁袁肇芄薇袀腿膇蒂衿衿莂莈衿羈膅蚇袈肄莁薃袇膆膄葿羆裊荿蒞羅羈膂蚄羄膀莇蝕羃節(jié)芀薆羃羂蒆蒂蕿肄羋莈薈膇蒄蚆薇袆芇薂蚇罿蒂蒈蚆肁芅莄蚅芃肈螃蚄羃莃蠆蚃肅膆薅螞膈莂蒁蟻袇膄莇蟻羀莀蚅螀肂膃薁蝿膄莈蕆螈襖膁蒃螇肆蒆荿螆膈艿蚈螅袈蒅薄螅羀羋蒀螄肅蒃莆袃膅芆蚅袂裊聿薁袁肇芄薇袀腿膇蒂衿衿莂莈衿羈膅蚇袈肄莁薃袇膆膄葿羆裊荿蒞羅羈膂蚄羄膀莇蝕羃節(jié)芀薆羃羂
2、蒆蒂蕿肄羋莈薈膇蒄蚆薇袆芇薂蚇罿蒂蒈蚆肁芅莄蚅芃肈螃蚄羃莃蠆蚃肅膆薅螞膈莂蒁蟻袇膄莇蟻羀莀蚅螀肂膃薁蝿膄莈蕆螈襖膁蒃螇肆蒆荿螆膈艿蚈螅袈蒅薄螅羀羋蒀螄肅蒃莆袃膅芆蚅袂裊聿薁袁肇芄薇袀腿膇蒂衿衿莂莈衿羈膅蚇袈肄莁薃袇膆膄葿羆裊荿蒞羅羈膂蚄羄膀 第三章 二維隨機(jī)變量及其分布第二節(jié) 常見題型1、二維隨機(jī)變量聯(lián)合分布函數(shù)例38:如下四個二元函數(shù),哪個不能作為二維隨機(jī)變量(X,Y)的分布函數(shù)?(A)(B)(C)(D)例39:設(shè)X與Y是兩個相互獨(dú)立的隨機(jī)變量,它們均勻地分布在(0,)內(nèi),試求方程t2+Xt+Y=0有實(shí)根的概率。例310:將一枚均勻硬幣連擲三次,以X表示三次試驗(yàn)中出現(xiàn)正面的次數(shù),Y表示出現(xiàn)正
3、面的次數(shù)與出現(xiàn)反面的次數(shù)的差的絕對值,求(X,Y)的聯(lián)合分布律。例311:設(shè)隨機(jī)變量,且,求例312:設(shè)某班車起點(diǎn)站上車人數(shù)X服從參數(shù)為的泊松分布,每位乘客在中途下車的概率為p(0<p<1),并且他們在中途下車與否是相互獨(dú)立的,用Y表示在中途下車的人數(shù),求:二維隨機(jī)向量(X,Y)的概率分布。例313:設(shè)平面區(qū)域D是由與直線y=0,x=1,x=e2所圍成(如圖3.15),二維隨機(jī)向量=(X,Y)在D上服從均勻分布,求(X,Y)關(guān)于X的邊緣分布密度在x=2處的值。例314:設(shè)隨機(jī)變量在區(qū)間上服從均勻分布,在的條件下,隨機(jī)變量在區(qū)間上服從均勻分布,求() 隨機(jī)變量和的聯(lián)合概率密度;()
4、的概率密度; () 概率2、隨機(jī)變量的獨(dú)立性例315:設(shè)隨機(jī)變量X在1,2,3,4四個整數(shù)中等可能地取值,另一隨機(jī)變量Y在1X中等可能地取一整數(shù)值,試求(X,Y)的分布律,X,Y的邊緣分布律,并判斷獨(dú)立性。例316:設(shè)隨機(jī)變量X與Y獨(dú)立,并且P(X=1)=P(Y=1)=p,P(X=0)=P(Y=0)=1-p=q,0<p<1。定義隨機(jī)變量Z為問當(dāng)p取何值時,X與Z相互獨(dú)立?例317:設(shè)求:(1)A,B,C的值;(2) f(x,y);(3) f1(x),f2(y)(4) 判斷獨(dú)立性。例318:設(shè)(X,Y)的密度函數(shù)為試求:(1)X,Y的邊緣密度函數(shù),并判別其獨(dú)立性;(2)(X,Y)的條
5、件分布密度;(3)P(X>2|Y<4).3、簡單函數(shù)的分布例319:設(shè)隨機(jī)變量相互獨(dú)立同B(1,0,4),求行列式的概率分布。例320:設(shè)隨機(jī)變量(X,Y)的分布密度為試求Z=X-Y的分布密度。例321:設(shè)隨機(jī)變量X和Y的聯(lián)合分布是正方形G=(x,y)|1x3, 1y3上的均勻分布,試求隨機(jī)變量U=|X-Y|的概率密度f(u).例322:設(shè)某型號的電子元件壽命(以小時計(jì))近似服從N(160,202)分布,隨機(jī)選取4件,求其中沒有一件壽命小于180小時的概率。例323:對某種電子裝置的輸出測量了5次,得到的觀察值,設(shè)它們是相互獨(dú)立的變量,且都服從同一分布試求:的概率。例324:設(shè)相互
6、獨(dú)立同N(0,22)分布,求常數(shù)a, b, c, d使服從分布,并求自由度m。例325:設(shè)隨機(jī)變量X與Y相互獨(dú)立同服從N(0,32)分布,以及是分別來自總體X,Y的樣本,求統(tǒng)計(jì)量的分布。例326:設(shè)隨機(jī)變量Xt(n)(n>1),求的分布。 蚅袈膁蒀蒈螄膁膀蚄蝕螇節(jié)蒆薆袆蒞螞襖裊肄蒅螀裊膇蝕螆襖荿蒃螞袃蒁莆羈袂膁薁袇袁芃莄螃袀莆薀蠆罿肅莂薅罿膇薈袃羈芀莁衿羇蒂薆螅羆膂葿蟻羅芄蚄薇羄莆蕆袆羃肆蚃螂肅膈蒆蚈肂芁蟻薄肁莃蒄羃肀膃芇衿聿芅薂螄肈莇蒞蝕肇肇薀薆肇腿莃裊膆芁蕿螁膅莄莂蚇膄肅薇薃膃芆莀羂膂莈蚅袈膁蒀蒈螄膁膀蚄蝕螇節(jié)蒆薆袆蒞螞襖裊肄蒅螀裊膇蝕螆襖荿蒃螞袃蒁莆羈袂膁薁袇袁芃莄螃袀莆薀蠆罿肅莂薅罿膇薈袃羈芀莁衿羇蒂薆螅羆膂葿蟻羅芄蚄薇羄莆蕆袆羃肆蚃螂肅膈蒆蚈肂芁蟻薄肁莃蒄羃肀膃芇衿聿芅薂螄肈莇蒞蝕肇肇薀薆肇腿莃裊膆芁蕿螁膅莄莂蚇膄肅薇薃膃芆莀羂膂莈蚅袈膁蒀蒈螄膁膀蚄蝕螇節(jié)蒆薆袆蒞螞襖裊肄蒅螀裊膇蝕螆襖荿蒃螞袃蒁莆羈袂膁薁袇袁芃莄螃袀莆薀蠆罿肅莂薅罿膇薈袃羈芀莁衿羇蒂薆螅
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年強(qiáng)力霹靂燈管項(xiàng)目可行性研究報(bào)告
- 2025年塑料封口項(xiàng)目可行性研究報(bào)告
- 2025至2031年中國中厚料機(jī)旋梭行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025年依非巴特項(xiàng)目可行性研究報(bào)告
- 2025年3-甲基-2-硝基苯甲酸項(xiàng)目可行性研究報(bào)告
- 2025至2030年鋼鐵制品項(xiàng)目投資價值分析報(bào)告
- 2025至2030年葡萄糖大輸液項(xiàng)目投資價值分析報(bào)告
- 2025至2030年白象牙木板材項(xiàng)目投資價值分析報(bào)告
- 2025至2030年浪涌抗擾度測試儀項(xiàng)目投資價值分析報(bào)告
- 2025至2030年木制辦公椅項(xiàng)目投資價值分析報(bào)告
- 主題旅游產(chǎn)品和線路推廣實(shí)施方案
- 梁湘潤《子平基礎(chǔ)概要》簡體版
- 兒童常用藥物及安全用藥課件
- 冬季安全生產(chǎn)知識講座
- 2024年媒體與傳媒行業(yè)培訓(xùn)資料掌握新媒體技術(shù)和內(nèi)容創(chuàng)作的最佳實(shí)踐
- 護(hù)士團(tuán)隊(duì)的協(xié)作和領(lǐng)導(dǎo)力培養(yǎng)培訓(xùn)課件
- 安全生產(chǎn)法培訓(xùn)課件
- 導(dǎo)言中職專用《職業(yè)道德與法治》(高教版2023基礎(chǔ)模塊)
- 人教版《道德與法治》四年級下冊教材簡要分析課件
- 數(shù)字示波器的工作原理及其應(yīng)用
- 病史采集評分標(biāo)準(zhǔn)-純圖版
評論
0/150
提交評論