下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、第 45 講合情推理與演繹推理1 下列在向量范圍內成立的命題,類比推廣到復數范圍內,仍然為真命題的個數是|ab|w|a|b|;|a+b|W|a|+|b|; a20;(a+ b)2= a2+ 2a b+ b2.A 1B 2C. 3D 42.若數列an的前 n 項和 Sn= n2an(n N ),且 ai= 1,通過計算 a2, a3, a4,猜想 a*為(B)2 2A n+ 1JB.n(n + 1)1 2因為 S2= 4a2= a1+ a2,所以 a2= 3= 6、 、 1 2 2因為 S3= 9a3= a1+ a2+ a3,所以 a3= = =776123X41 1S4=16a4=a1+a2+
2、a3+a4=1+ 3+6+a43.(2017 全國卷n)甲、乙、丙、丁四位同學一起去向老師詢問成語競賽的成績老師說:你們四人中有 2 位優(yōu)秀,2 位良好,我現在給甲看乙、丙的成績,給乙看丙的成績,給 丁看甲的成績看后甲對大家說:我還是不知道我的成績根據以上信息,則(D)A 乙可以知道四人的成績B .丁可以知道四人的成績C. 乙、丁可以知道對方的成績D. 乙、丁可以知道自己的成績噩 3 由甲說:“我還是不知道我的成績”可推知甲看到乙、丙的成績?yōu)椤?1 個優(yōu)秀、1 個良好”.乙看丙的成績,結合甲的說法,丙為“優(yōu)秀”時,乙為“良好”;丙為“良好時,乙為“優(yōu)秀”,可得乙可以知道自己的成績丁看甲的成績,
3、結合甲的說法,甲為“優(yōu)秀”時,丁為“良好”;甲為“良好”時,丁為“優(yōu)秀”,可得丁可以知道自己的成績.4.已知點 A(x1, ax1),B(X2, ax2)是函數 y= ax(a1)的圖象上任意不同的兩點,依據圖 象可知,線段 AB 總是位于 A, B 兩點之間函數圖象的上方,因此有結論aX1+aX2aX1+2X2成(C)其中、為真,為假,故選C.C.22n- 1D.22n 22X3,所以丄a4=石=2202市,所以猜想2*an=(n ).n(n + 1 )或 1 和 3又根據乙看了丙的卡片后說:“我與丙的卡片上相同的數字不是1 ”可知,乙的卡A(xi, sin xi),B(X2,sin x?)
4、是函數 y = sin x(x (0 ,R)(C)凸函數,f(Xi卄 f(X2 ) Xi+ X2從推理過程類比有f(2 ) sinxi+ x?2B.sin xi+sin X2_2 =.xi+ X2sinC.sin xi+ sin X2i)為凹函數,有f xi+ f x2Xi+ x22f(丁);y= sin x(x(O,n) 的圖象為sin xi+ sin X2xi+ X2即有或 1 和 3又根據乙看了丙的卡片后說:“我與丙的卡片上相同的數字不是1 ”可知,乙的卡甲的卡片上的數字是1 和 3 .CO 由丙說“我的卡片上的數字之和不是5”,可推知丙的卡片上的數字是1 和 2片不含 1,所以乙的卡片
5、上的數字為2 和 3再根據甲的說法“我與乙的卡片上相同的數字不是 2”可知,甲的卡片上的數字是1 和 3.7. (2018 湖南岳陽月考)觀察:sin210+ cos240+ sin 10 c6s 40 =;sin260+ cos2363+ sin 6 cos 36 =-4由上面兩題的結構規(guī)律,你能否提出一個猜想?并證明你的猜想. 22.3sina+cos (a+30 )+sin 況 cos(30 a)=.1 .cosaqsin a).2323=sina+COSa2丄.1 .22 cos csinagSina=4sin2a+|cos2a=4 =右邊,故猜想成立.&如圖所示的數陣中,用
6、A(m, n)表示第 m 行的第 n 個數,則依此規(guī)律 A(15,2)為(C)13116611丄10310丄1313115303015111311321215221297A 一 B A.42B.10從第三行起,每一行第二個數字都是該數字肩上兩個數字之和,猜想:證明:左邊=心存 cos12sin必osa+4sinaC.172473.102由數陣圖可以看出每一行的第一個數的分子都是1,分母按 3,6,10,15,排列,A(3,2) =1+1,1 1 1A(4,2)= 6+6+ 而iiiiA(5,2) = 6+ 6+10+15,1111A( n,2)= 6+ 6 + 后 + 亦+1111111111
7、17所以A(15,2)=6+2(3-4+4 一 5+祜面=e+ 2(3-屆)=24故選 C.9. (2018 湖南長郡中學聯考)將正整數 12 分解成兩個正整數的乘積有 1X12,2X6,3X4 三種,其中 3X4 是這三種分解中兩數差的絕對值最小的,我們稱 3X4 為 12 的最佳分解.當pXq(pwq 且 p, q N )是正整數的最佳分解時,我們定義函數f(n)= q p,例如 f(12) = 4 3= 1,數列f(3n)的前 100 項和為 350 1 .CEJ a1= f(3) = 31 30,a2= f(32) = 31 31= 0;a3= f(33) = 32 31,422a4=
8、 f(3 ) = 3 3 = 0,a5= f(35) = 33 32,類比上述性質,在等比數列bn中,寫出相類似的性質.Q3類比等差數列的性質可得到等比數列的相應性質:2若 m+ n = p+ q(m, n, p, qN*),貝 U bmbn= bpbq.3若 m+ n = 2p(m, n, pej*),則 bmbn= bp.*n4Sn, S2n Sn, S3n S2n(n N )構成公比為 q 的等比數列.5bk, bk+m, bk+2m,(k, m3*)構成公比為 qm的等比數列.995049a99= f(3 )= 3 3 ,a100= f(399 100)= 350 350= 0.所以000= 31 30+ 32 31+ + 350 349= 350 1.10已知等差數列an的公差為 d,前 n 項和為 Sn,有如下的性質:anam1an= am+ (n m)d, d =(n豐m).n m*2右 m+ n = p+ q(m, n, p, q N ),貝yam+ an= ap+ aq.3若 m+ n = 2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年人教五四新版九年級科學下冊月考試卷含答案
- 2024 四川公務員考試行測真題(綜合管理崗)
- 二零二五年度農機維修保養(yǎng)及零配件供應合同4篇
- 2025年度美團騎手服務規(guī)范及考核評價合同3篇
- 2025年度特色餐廳廚房承包項目合同4篇
- 2025年度奶業(yè)市場調研與競爭分析合同4篇
- 拆除金屬廢物回收利用合同(2篇)
- 二零二五年度icp許可證申請與互聯網企業(yè)品牌建設合同3篇
- 二零二五年度儲藏室租賃合同終止及資產返還協(xié)議4篇
- 2025年度食品級儲藏室設計與建造合同3篇
- 四川省成都市武侯區(qū)2023-2024學年九年級上學期期末考試化學試題
- 2024年秋季人教版七年級上冊生物全冊教學課件(2024年秋季新版教材)
- 環(huán)境衛(wèi)生學及消毒滅菌效果監(jiān)測
- 2024年共青團入團積極分子考試題庫(含答案)
- 碎屑巖油藏注水水質指標及分析方法
- 【S洲際酒店婚禮策劃方案設計6800字(論文)】
- 鐵路項目征地拆遷工作體會課件
- 醫(yī)院死亡報告年終分析報告
- 中國教育史(第四版)全套教學課件
- 2023年11月英語二級筆譯真題及答案(筆譯實務)
- 上海民辦楊浦實驗學校初一新生分班(摸底)語文考試模擬試卷(10套試卷帶答案解析)
評論
0/150
提交評論