蘇科版八年級(jí)上冊(cè)數(shù)學(xué)期末易錯(cuò)試題匯總(含答案)_第1頁(yè)
蘇科版八年級(jí)上冊(cè)數(shù)學(xué)期末易錯(cuò)試題匯總(含答案)_第2頁(yè)
蘇科版八年級(jí)上冊(cè)數(shù)學(xué)期末易錯(cuò)試題匯總(含答案)_第3頁(yè)
蘇科版八年級(jí)上冊(cè)數(shù)學(xué)期末易錯(cuò)試題匯總(含答案)_第4頁(yè)
蘇科版八年級(jí)上冊(cè)數(shù)學(xué)期末易錯(cuò)試題匯總(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩24頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、蘇科版八年級(jí)上冊(cè)數(shù)學(xué)期末易錯(cuò)試題匯總(含答案)、選擇題1.如圖.在正方形網(wǎng)格中,若點(diǎn)A(U),點(diǎn)C(3,-2),則點(diǎn)3的坐標(biāo)為()A. (1,2)B. (0,2)C. (2,0)D. (2J)ABC2下列運(yùn)算正確的是()A. 屮=2B. 3=3C 阿=±2D 導(dǎo)=33下列圖形中的五邊形ABCDE都是正五邊形,則這些圖形中的軸對(duì)稱圖形有()4.甲竹文是我國(guó)的一種古代文字,是漢字的早期形式,下列甲竹文中,不是軸對(duì)稱的是( )5.下列根式中是最簡(jiǎn)二次根式的是(A- JB. Jc. 9d. 126.如圖,已知AABC的三條邊和三個(gè)角,則職乙.丙三個(gè)三角形中和AABC全等的是A. 甲和乙B.甲

2、和丙C.乙和丙D.只有乙7. 已知:如圖,Z I = Z 2,則不一左能使AABD旻AACD的條件是()DA AB = ACB BD = CDC. Z B = Z CD Z BDA = Z CDA8. 在平而直角坐標(biāo)系中,將函數(shù)y = 3x的圖象向上平移6個(gè)單位長(zhǎng)度,則平移后的圖象與 X軸的交點(diǎn)坐標(biāo)為()A. (2,0)B(-2,0)C. (6z0)D卜6,0)9. 在"BC中,ZACB = 90°, CD丄于點(diǎn)6 ZA = 30。,以下說(shuō)法錯(cuò)誤的是()A. AC=2CDB. AD=2CDC. AD=3BDD AB=2BC10. 正比例函數(shù)ykx ( c0)的函數(shù)值y隨著X

3、增大而減小,則一次函數(shù)y=x÷k的圖象大致二. 填空題11若關(guān)于”的分式方程口一藥=1有增根,12如圖,在四邊形ABCD中,ZA=90°, AD=A9連接BD, BD丄CD, Z ADB=A C.若P是BC邊上一動(dòng)點(diǎn),則DP長(zhǎng)的最小值為13.如圖,一艘輪船由海平而上的人地出發(fā)向南偏西459的方向行駛50海里到達(dá)8地, 再由B地向北偏西159的方向行駛50海里到達(dá)C地,則久C兩地相距海里.北14如圖,等邊AOAB的邊長(zhǎng)為2,以它的頂點(diǎn)O為原點(diǎn),03所在的直線為X軸,建立平 而直角坐標(biāo)系若直線尸x+b與A0A3的邊界總有兩個(gè)公共點(diǎn),則實(shí)數(shù)b的范帀是15. 在一次函數(shù)歹=伙一l)

4、x + 5中,)'隨X的增大而增大,貝的取值范圍16. 如圖匸比例函數(shù)y=kx與反比例函數(shù)y=9的圖象有一個(gè)交點(diǎn)A(2 , m) , AB丄X軸于點(diǎn)XB, 平移直線y=kx使其經(jīng)過(guò)點(diǎn)B,得到直線I ,則直線I對(duì)應(yīng)的函數(shù)表達(dá)式是17. 已知一次函數(shù)y=m-3的圖像與X軸的交點(diǎn)坐標(biāo)為(畑0),且2x03,則m的取值范圍是.18. 小明體重約為62.36千克,如果精確到0.1千克,其結(jié)果為_(kāi)千克.19. 已知函數(shù)y=×+m-2019 (m是常數(shù))是正比例函數(shù),則m=20如圖,在2A3C中,ZC= 90% Z8 = 22.5o, DE垂直平分&3交BC于點(diǎn)& EC=I

5、,則 三角形ACE的面積為_(kāi)21. (1)計(jì)算:16-8 :(2)求X 的值:(x + 2)2-9 二022. 已知2-1的算術(shù)平方根是3, 3a + b-的平方根是±4,C是2T的整數(shù)部分,求 a + 2b-c的平方根.23. 某列車平均提速vkmh,用相同的時(shí)間,列車提速前行駛150km,提速后比提速前多 行駛5Okm,提速前列車的平均速度為多少?(用含V的式子表示)24. 某商店準(zhǔn)備購(gòu)進(jìn)A,B兩種商品,A種商品毎件的進(jìn)價(jià)比3種商品每件的進(jìn)價(jià)多20元 用3000元購(gòu)進(jìn)A種商品和用1800元購(gòu)進(jìn)3種商品的數(shù)量相同.商店將A種商品每件 的售價(jià)建為80元,種商品每件的售價(jià)建為45元.(

6、1) A種商品每件的進(jìn)價(jià)和B種商品每件的進(jìn)價(jià)各是多少元?(2) 商店汁劃用不超過(guò)2560元的資金購(gòu)兩種商品共40件,苴中A種商品的數(shù)量 不低于3種商品數(shù)疑的一半,該商店有幾種進(jìn)貨方案?(3) 端午節(jié)期間,商店開(kāi)展優(yōu)惠促銷活動(dòng),決圧對(duì)每件A種商品售價(jià)優(yōu)惠川 (10<w<20)元,種商品售價(jià)不變,在(2)條件下,請(qǐng)?jiān)O(shè)計(jì)出銷售這40件商品獲得總利潤(rùn)最大的進(jìn)貨方案.25. 如圖,點(diǎn)D是AABC內(nèi)部的一點(diǎn),BD=CD,過(guò)點(diǎn)D作DE丄AB , DF丄AC,垂足分別為 EX F,且 BE=CF.求證:AB=AC .四、壓軸題26. 如圖,已知等AABC中,AB=AC, ZA<90o, CD

7、是"8C的高,BF是MBC的角平分 線,CD與BE交于點(diǎn)P.當(dāng)ZA的大小變化時(shí),HPC的形狀也隨之改變.(1) 當(dāng)ZA=44。時(shí),求ZBPD的度數(shù):(2) 設(shè)ZA=XOt ZEPC=y。,求變量y與X的關(guān)系式:(3) 當(dāng)AFPC是等腰三角形時(shí),請(qǐng)直接寫(xiě)出ZA的度數(shù).27. 問(wèn)題背景:(1)如圖1,已知ZkABC中,ZBAC = 90° , AB=AC,直線m經(jīng)過(guò)點(diǎn)A,BD丄直線m, CE丄直線m,垂足分別為點(diǎn)D、E.求證:DE=BD + CE.拓展延伸:(2)如圖2,將(1)中的條件改為:在ZABC中,AB=AC, D、A、E三點(diǎn)都 在直線m上,并且有ZBDA=ZAEC=Z

8、BAC.請(qǐng)寫(xiě)岀DE、BD、CE三條線段的數(shù)量關(guān) 系.(不需要證明)實(shí)際應(yīng)用:(3)如圖,在ZkACB中,ZACB=90° , AC=BC,點(diǎn)C的坐標(biāo)為(一2, 0),點(diǎn) A的坐標(biāo)為(一6, 3),請(qǐng)直接寫(xiě)出B點(diǎn)的坐標(biāo). 把一張長(zhǎng)方形的紙片按如圖所示的方式折疊,EM , 為折痕,折疊后的C點(diǎn)落在BIM或妨M的延長(zhǎng)線上,那么ZEMF的度數(shù)是; 把一張長(zhǎng)方形的紙片按如圖所示的方式折疊,3點(diǎn)與M點(diǎn)重合,EM , FM為折痕,折疊后的C點(diǎn)落在AM或AM的延長(zhǎng)線上,那么ZEMF的度數(shù)是.(2)解答:把一張長(zhǎng)方形的紙片按如圖所示的方式折疊,EM, FM為折痕,折疊 后的C點(diǎn)落或的延長(zhǎng)線上左側(cè),且Z

9、EMF= 80°,求ZCIMBI的度數(shù):把一張長(zhǎng)方形的紙片按如圖所示的方式折疊,點(diǎn)與M點(diǎn)重合,EM, FM為折 痕,折疊后的C點(diǎn)落在AM或AM的延長(zhǎng)線右側(cè),且ZEMF = 60。,求ZCIMAl的度 數(shù).(3)探究:把一張四邊形的紙片按如圖所示的方式折疊,EB,陽(yáng)為折痕,設(shè)ZABC = o, ZEBF = 0。, ZABG=廠,求, 0, 了之間的數(shù)量關(guān)系.29.如圖,已知直線d y = 2x÷l與坐標(biāo)軸交于久C兩點(diǎn),直線b: y2=-x-2與坐標(biāo)軸 交于& D兩點(diǎn),兩直線的交點(diǎn)為P點(diǎn).求P點(diǎn)的坐標(biāo):求AAPB的面積;(3)x軸上存在點(diǎn)使得S阿P=SS 求岀此時(shí)點(diǎn)7

10、的坐標(biāo)備用園直線y=2x+6與X軸交于點(diǎn)兒 與y軸交于點(diǎn)B,過(guò)點(diǎn)B(1)求直線BC的解析式:(2)點(diǎn)P為線段ABh一點(diǎn),點(diǎn)Q為線段BC延長(zhǎng)線上一點(diǎn),且AP=CQ,設(shè)點(diǎn)Q橫坐標(biāo) 為求點(diǎn)P的坐標(biāo)(用含m的式子表示,不要求寫(xiě)出自變量m的取值范囤):(3)在(2)的條件下,點(diǎn)M在y軸負(fù)半軸上,且MP=MQ,若ZBQM=45。,求直線PQ 的解析式.【參考答案】*試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、選擇題1. C解析:C【解析】【分析】根據(jù)點(diǎn)A(l,l),點(diǎn)C(3,-2)建立平而直角坐標(biāo)系,再結(jié)合圖形即可確泄岀點(diǎn)B的坐標(biāo).【詳解】解:T點(diǎn)A的坐標(biāo)是:(1, 1),點(diǎn)C的坐標(biāo)是:(3, -2),點(diǎn)B的坐標(biāo)是:(2

11、, 0).故選:C.本題主要考查了點(diǎn)的坐標(biāo),點(diǎn)坐標(biāo)就是在平而宜角坐標(biāo)系中,坐標(biāo)平面內(nèi)的點(diǎn)與一對(duì)有序 實(shí)數(shù)是一一對(duì)應(yīng)的關(guān)系,這對(duì)有序?qū)崝?shù)則為這個(gè)點(diǎn)的坐標(biāo)點(diǎn)的坐標(biāo).2. A解析:A【解析】【分析】根據(jù)算術(shù)平方根和立方根的定義、絕對(duì)值的性質(zhì)逐一計(jì)算可得結(jié)論.【詳解】A. 4=2,此選項(xiàng)計(jì)算正確;B . I - 3 =3,此選項(xiàng)計(jì)算錯(cuò)誤:C. 用=2,此選項(xiàng)計(jì)算錯(cuò)誤:D. 9不能進(jìn)一步計(jì)算,此選項(xiàng)錯(cuò)誤.故選A.【點(diǎn)睛】本題考查了算術(shù)平方根,解題的關(guān)鍵是掌握算術(shù)平方根和立方根的立義、絕對(duì)值性質(zhì).3. D解析:D【解析】分析:直接利用軸對(duì)稱圖形的性質(zhì)畫(huà)出對(duì)稱軸得出答案.詳解:如圖所示:直線I即為各圖形的對(duì)

12、稱軸.故選:D 點(diǎn)睛:此題主要考査了軸對(duì)稱圖形,正確把握軸對(duì)稱圖形的定義是解題關(guān)鍵.4. D解析:D【解析】試題分析:A.是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤:B. 是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;C. 是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;D. 不是軸對(duì)稱圖形,故本選項(xiàng)正確.故選D.考點(diǎn):軸對(duì)稱圖形.5. B解析:B【解析】【分析】【詳解】A. JI =並,故此選項(xiàng)錯(cuò)誤;V3 3B. 、療是最簡(jiǎn)二次根式,故此選項(xiàng)正確:C. 9=3.故此選項(xiàng)錯(cuò)誤;D. 12=23,故此選項(xiàng)錯(cuò)誤:故選B.考點(diǎn):最簡(jiǎn)二次根式.6. B解析:B【解析】【分析】根據(jù)三角形全等的判沱左理SSS、SAS、AAS、ASA、HL逐個(gè)進(jìn)行分析即可.【

13、詳解】解:甲三角形有兩條邊及夾角與AABC對(duì)應(yīng)相等,根據(jù)SAS可以判斷甲三角形與AABC全等:乙三角形只有一條邊及對(duì)角與AABC對(duì)應(yīng)相等,不滿足全等判立條件,故乙三角形與ABC不能判左全等:丙三角形有兩個(gè)角及夾邊與AABC對(duì)應(yīng)相等,根據(jù)ASA可以判泄丙三角形與AABC全等: 所以與AABC全等的有甲和丙,故選:B.【點(diǎn)睛】本題主要考査全等三角形的判定定理,熟練掌握并充分理解三角形全等的判定定理,注意 對(duì)應(yīng)二字的理解很重要.7. B解析:B【解析】試題分析:利用全等三角形判定定理ASA, SAS, AAS對(duì)各個(gè)選項(xiàng)逐一分析即可得出答案. 解:A. VZ I=Z 2, AD為公共邊,若AB=AC,

14、則 ABD里 ACD (SAS):故A不符合題 意:B. V Z I=Z 2, AD為公共邊,若BD=CD,不符合全等三角形判左泄理,不能判泄 ABD里 ACD;故B符合題意;CX V Z I=Z 2, AD為公共邊,若Z B=Z C,則 AB於 ACD (AAS):故C不符合題意; D, . Z I=Z 2, AD 為公共邊,若ZBDA=Z CDA,則AABD ACD (ASA):故 D 不符合 題意.故選B.考點(diǎn):全等三角形的判左.& B解析:B【解析】【分析】先求出平移后的解析式,繼而令尸0,可得關(guān)于X的方程,解方程即可求得答案【詳解】根據(jù)函數(shù)圖象平移規(guī)律,可知)=3X向上平移6

15、個(gè)單位后得函數(shù)解析式應(yīng)為y = 3 + 6, 此時(shí)與X軸相交,則V = O,. 3x+6 = 0 ,即 X =-2,點(diǎn)坐標(biāo)為卜2, 0),故選B.【點(diǎn)睛本題考查了一次函數(shù)圖象的平移,一次函數(shù)圖象與坐標(biāo)軸的交點(diǎn)坐標(biāo),先出平移后的解析 式是解題的關(guān)鍵.9 . B解析:B【解析】【分析】在Rt8C中,由ZA的度數(shù)求出ZB的度數(shù),在RtBCD中,可得出ZBCD度數(shù)為30。, 根據(jù)直角三角形中,30。所對(duì)的直角邊等于斜邊的一半,得到BC=2BD,由BD的長(zhǎng)求岀BC 的長(zhǎng),在Rt"3C中,同理得到AB=2BC,于是得到結(jié)論.【詳解】解:V ABC 中,ZACB=90°, ZA=30&#

16、176;,.% = 2BC:VCD-LAB,.AC=2CD, .ZB=60°,又 CD丄AB,.ZBCD=30°,在 RtABCD 中,ZBCD=30°, CD=忑BD,在 Rt8C 中,ZA = 30°, AD=*CD=3BD,故選:B.【點(diǎn)睛】此題考查了含30。角直角三角形的性質(zhì),以及三角形的內(nèi)角和左理,熟練掌握性質(zhì)是解本 題的關(guān)鍵.10. A解析:A【解析】【分析】根據(jù)自正比例函數(shù)的性質(zhì)得到k<0,然后根據(jù)一次函數(shù)的性質(zhì)得到一次函數(shù)y=x+k的圖象 經(jīng)過(guò)第一、三象限,且與y軸的負(fù)半軸相交.【詳解】解:正比例函數(shù)y=kx (k0)的函數(shù)值y隨X

17、的增大而減小,. k<0 ,.次函數(shù)y=x+k的一次項(xiàng)系數(shù)大于0 ,常數(shù)項(xiàng)小于0 ,次函數(shù)y=+<的圖象經(jīng)過(guò)第一、三象限,且與y軸的負(fù)半軸相交故選A.【點(diǎn)睛】本題考查了一次函數(shù)圖象:一次函數(shù)y=kx+b (k、b為常數(shù),k0)是一條直線,當(dāng)k>0,圖象經(jīng)過(guò)第一、三象限,y隨X的增大而增大:當(dāng)k<0,圖象經(jīng)過(guò)第二、四象限,y隨 X的增大而減??;圖象與y軸的交點(diǎn)坐標(biāo)為(O, b).二、填空題114【解析】【分析】方程笫二個(gè)分母提取-1變形后,去分母轉(zhuǎn)化為整式方程,表示出方程的解,令 方程的解為2,即可求出a的值.【詳解】方程變形得:,去分母得:x+-a=-2,解得:x=a解

18、析:4【解析】【分析】方程第二個(gè)分母提取J變形后,去分母轉(zhuǎn)化為整式方程,表示岀方程的解,令方程的解為2,即可求出a的值.【詳解】方程變形得:Xx-2x-2=1,去分母得:×+×-a=x-2t解得:×=a-2,YY /方程一一-一 =1有增根, % 22 X.°.x=2,即 a-2=2,解得:a=4,故答案為:4.【點(diǎn)睛】此題考查了分式方程的增根,增根問(wèn)題可按如下步驟進(jìn)行:讓最簡(jiǎn)公分母為O確定增根:化分式方程為整式方程;把增根代入整式方程即可求得相關(guān)字母的值.12. 4【解析】如圖,過(guò)點(diǎn)D作DE丄BC于點(diǎn)E,當(dāng)DP=DE時(shí),DP最小,TBD丄DC, ZA二

19、90° ,AZDEB=ZDEC=90o =ZA, ZBDC二90° ,ZC+ZCDE=90o , ZCDE+解析:4【解析】如圖,過(guò)點(diǎn)D作DE丄BC于點(diǎn)E ,當(dāng)DP=DE時(shí),DP最小,. BD±DC , Z A=90o , Z DEB=Z DEC=90o=Z A , Z BDC=90o , Z C+Z CDE=90o r Z CDE+Z BDE=90o ,. Z BDE=Z C r又T Z ADB=Z C f. Z ADB=Z BDE fZA = ZDEB.在AABD 和AEBD 中 ZADB = ZBDE IBD = BD:.DE=AD=4 ,即DP的最小值為4

20、.13 . 50【解析】【分析】由已知可得 ABC是等邊三角形,從而不難求得AC的距離.【詳解解:點(diǎn)B在點(diǎn)A的南偏西45。方向上,點(diǎn)C在點(diǎn)B的北偏西15。方向上,Z ABC=45o+15o=60解析:50【解析】【分析】由已知可得AABC是等邊三角形,從而不難求得AC的距離.【詳解】解:點(diǎn)B在點(diǎn)A的南偏西45°方向上,點(diǎn)C在點(diǎn)B的北偏四15°方向上, ZABC=45° +15° =60°VAB=BC=50,ABC是等邊三角形,AC=50;故答案為:50.【點(diǎn)睛】本題主要考査了解直角三角形中的方向角問(wèn)題,能夠證明AABC是等邊三角形是解題的關(guān) 鍵

21、.14.【解析】【分析】由題意,可知點(diǎn)A坐標(biāo)為(1,),點(diǎn)B坐標(biāo)為(2, 0),由直線與AOAB的邊 界總有兩個(gè)公共點(diǎn),有截距b在線段CD之間,然后分別求出點(diǎn)C坐標(biāo)和點(diǎn)D坐 標(biāo),即可得到答案.【詳解】解解析:-2<<3-l【解析】【分析】由題意,可知點(diǎn)A坐標(biāo)為(1, JJ),點(diǎn)B坐標(biāo)為(2, 0),由直線y = X + b與 OAB 的邊界總有兩個(gè)公共點(diǎn),有截距b在線段CD之間,然后分別求岀點(diǎn)C坐標(biāo)和點(diǎn)D坐標(biāo), 即可得到答案.【詳解】.VABC是等邊三角形,且邊長(zhǎng)為2,OB=OA=2, OE=I, AE = J2,-卩=y3 »點(diǎn)A為(1, JJ),點(diǎn)B為(2, 0):當(dāng)

22、直線y = x + b經(jīng)過(guò)點(diǎn)A (1, J)時(shí),與AABC邊界只有一個(gè)交點(diǎn),則 1 +Z? = x/3 » 解得:h = y/J- 1 >.點(diǎn)D的坐標(biāo)為(0,3-l ):當(dāng)直線y = x + b經(jīng)過(guò)點(diǎn)B (2, 0)時(shí),與AABC邊界只有一個(gè)交點(diǎn),則 2 + b = 0,解得:b = -2,.點(diǎn)C的坐標(biāo)為(0, -2):.直線y = x + b與厶O(píng)AB的邊界總有兩個(gè)公共點(diǎn)時(shí),截距b在線段CD之間, 實(shí)數(shù)b的范圍是:-2<b<y3-t故答案為:-2<bvJJ-l.【點(diǎn)睛】本題考查了等邊三角形的性質(zhì),一次函數(shù)的圖形和性質(zhì),解題的關(guān)鍵是掌握一次函數(shù)的圖 像和性質(zhì),

23、掌握直線與等邊三角形有一個(gè)交點(diǎn)是臨界點(diǎn),注意分類討論.15.【解析】【分析】根據(jù)一次函數(shù)的性質(zhì),即可求出k的取值范圍.【詳解】解:Y 次函數(shù)中,隨的增大而增大,故答案為:【點(diǎn)睛】本題考查了一次函數(shù)的性質(zhì),解題的關(guān)鍵是熟練掌握一次解析:k>【解析】【分析】根據(jù)一次函數(shù)的性質(zhì),即可求出k的取值范囤.【詳解】解: 一次函數(shù)y =伙l)+5中,y隨X的增大而增大,.R-1>O,:,k> X故答案為:k>.【點(diǎn)睛】本題考查了一次函數(shù)的性質(zhì),解題的關(guān)鍵是熟練掌握一次函數(shù)的性質(zhì)進(jìn)行解題.16. y=x-3【解析】【分析】曲已知先求出點(diǎn)A、點(diǎn)B的坐標(biāo),繼而求出y=kx的解析式,再根據(jù)直

24、 線y=kx平移后經(jīng)過(guò)點(diǎn)B,可設(shè)平移后的解析式為y=kx+b,將B點(diǎn)坐標(biāo)代入求 解即可得.【詳解】當(dāng)x=23解析:y=y -3【解析】【分析】由已知先求出點(diǎn)A、點(diǎn)B的坐標(biāo),繼而求出y*x的解析式,再根據(jù)宜線y=kx平 移后經(jīng)過(guò)點(diǎn)B,可設(shè)平移后的解析式為y=kx+b,將B點(diǎn)坐標(biāo)代入求解即可得.【詳解】當(dāng) ×=2 時(shí),y=-=3 , .A(2 , 3) , B ( 2 , 0 ),3當(dāng)勺=3 時(shí),一=3 , n = ,m33當(dāng)無(wú))=2 H 寸,一=2 , In =,m23m的取值范囤為:lm-23故答案為:lm-2【點(diǎn)睛】本題考查了一次函數(shù)與坐標(biāo)軸的交點(diǎn)以及不等式的求法,根據(jù)與X軸的交點(diǎn)

25、橫坐標(biāo)的范用求得m的取值范圍是解題的關(guān)鍵.18. 4.【解析】【分析】把白分位上的數(shù)字6進(jìn)行四舍五入即可.【詳解】62. 36千克精確到0. 1千克為62.4千克.故答案為:62.4.【點(diǎn)睛】本題考查了近似數(shù)和有效數(shù)字:近似數(shù)與精確數(shù)的解析:4.【解析】【分析】把百分位上的數(shù)字6進(jìn)行四舍五入即可.【詳解】62.36千克精確到0.1千克為62.4千克.故答案為:62.4.【點(diǎn)睛】本題考查了近似數(shù)和有效數(shù)字:近似數(shù)與精確數(shù)的接近程度,可以用精確度表示.一般有,精確到哪一位,保留幾個(gè)有效數(shù)字等說(shuō)法.19. 2019【解析】【分析】根據(jù)正比例函數(shù)的定義,m-2019=0,從而求解.【詳解】解:根據(jù)題意

26、得:m-2019=0,解得:m=2019,故答案為2019.【點(diǎn)睛】本題主要考查了正比解析:2019【解析】【分析】根據(jù)正比例函數(shù)的圧義,m-2019=0,從而求解.【詳解】解:根據(jù)題意得:m-2019=0,解得:m=2019,故答案為2019.【點(diǎn)睛】本題主要考査了正比例函數(shù)的泄義,形如y=kx (k是常數(shù),f0)的函數(shù),英中k叫做比 例系數(shù).正比例函數(shù)一定是一次函數(shù),但一次函數(shù)不一泄是正比例函數(shù).20 .【解析】【分析】由線段垂直平分線的性質(zhì)可知EA = EB ,由等邊對(duì)等角的性質(zhì)及外角的性質(zhì)可得 Z AEC二45。Z易知 ACE為等腰直角三角形,可得CA長(zhǎng),利用三角形面積公式 求解即可.

27、【詳解解解析:2【解析】【分析】由線段垂直平分線的性質(zhì)可知EA=EB,由等邊對(duì)等角的性質(zhì)及外角的性質(zhì)可得ZAEC= 45° ,易知AACF為等腰直角三角形,可得CA長(zhǎng),利用三角形而積公式求解即可.【詳解】解:Y DE垂直平分加交3C于點(diǎn)E,EA = EB,:.ZEAB=ZB=22.5a ,. ZAEC=ZEAB+ZB=ASo ,V Z C=90° , AACE為等腰直角三角形,:.CACE=1,三角形AeE的而積=× 1 × I=2 2故答案為:丄.2【點(diǎn)睛】本題主要考査了線段垂直平分線的性質(zhì)及等腰三角形的性質(zhì),線段垂直平分線上的點(diǎn)到線 段兩端的距離相等

28、,等腰三角形的兩底角相等,靈活利用這兩個(gè)性質(zhì)是解題的關(guān)鍵.三、解答題21. (1) 6:(2) x=l 或X=-5 .【解析】【分析】(1) 本題涉及算術(shù)平方根、立方根2個(gè)考點(diǎn).在計(jì)算時(shí),需要針對(duì)每個(gè)考點(diǎn)分別進(jìn)行計(jì) 算,然后根據(jù)實(shí)數(shù)的運(yùn)算法則求得計(jì)算結(jié)果.(2) 移項(xiàng)后,兩邊直接開(kāi)平方即可得到x+2=3, x+2=-3,求解即可.【詳解】(1) 原式=4- (-2) =4+2=6;(2) x+2=±3.x+2=3, x+2=-3.×=1 或 x=-5.【點(diǎn)睛】本題考查了實(shí)數(shù)運(yùn)算和直接開(kāi)平方法解一元二次方程,關(guān)鍵是掌握算術(shù)平方根、立方根各 知識(shí)點(diǎn).22. ±5【解析

29、】【分析】根據(jù)算術(shù)平方根的左義求出a的值,根據(jù)平方根的定義求出b的值,根拯微粒數(shù)的估算求 岀C的值,然后代入計(jì)算,即可得到答案.【詳解】解:.2d-l的算術(shù)平方根是3,: 2a 1=9 ,' d = 5 :V 3a+b-1的平方根是±4, 3r + Z?-1=16»: 3x5+/? 1=16 ,:.b = 2 ;, 25=20,又4v2O <5> 2亦的整數(shù)部分為4, a + 2Z?c = 5 + 2x24 = 5 ,:.a+2b-c的平方根為:±J【點(diǎn)睛】本題考查了算術(shù)平方根、平方根、估算無(wú)理數(shù)的大小等知識(shí)點(diǎn),能根據(jù)已知得出a、b、C 的值是

30、解此題的關(guān)鍵.23 3vkmh【解析】【分析】設(shè)提速前列車的平均速度為XkmIh ,則依題意可得等量關(guān)系:提速前行駛150千米所用 的時(shí)間=提速后行駛(150 + 50)千米所用的時(shí)間,根據(jù)等量關(guān)系列出方程即可.【詳解】解:設(shè)提速前列車的平均速度為X km/h .則依題意列方程得列=m,X X÷ V解得:a- = 3v,經(jīng)檢驗(yàn),a=3v是原分式方程的解,答:提速前列車的平均速度為3vkmh,【點(diǎn)睛】此題主要考査了分式方程的應(yīng)用,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系,列岀方 程.24. (IA種商品每件的進(jìn)價(jià)是50元,3種商品每件的進(jìn)價(jià)是30元;(2)商店共有5種 進(jìn)貨方案;(3)

31、當(dāng)0 = 18時(shí),獲利最大,即買(mǎi)18件A商品,22件商品,當(dāng)加=15 時(shí),15-加=0,(2)問(wèn)中所有進(jìn)貨方案獲利相同,當(dāng)t = 14時(shí),獲利最大,即買(mǎi)14 件A商品 26件B商品【解析】【分析】(1)設(shè)A商品每件進(jìn)價(jià)為X元,B商品每件的進(jìn)價(jià)為(x-20)元,根據(jù)4種商品毎件的進(jìn) 價(jià)比3種商品每件的進(jìn)價(jià)多20元,用3000元購(gòu)進(jìn)A種商品和用1800元購(gòu)進(jìn)種商品的 數(shù)量相同,列方程求解;(2)設(shè)購(gòu)買(mǎi)A種商品件,則購(gòu)買(mǎi)商品(40 d)件,根據(jù)商店計(jì)劃用不超過(guò)1560元 的資金購(gòu)進(jìn)兩種商品共40件,其中A種商品的數(shù)量不低于B種商品數(shù)量的一半,列 出不等式組即可(3)先設(shè)銷售人3兩種商品共獲利y元,然

32、后分析求解新的進(jìn)貨方案【詳解】(I)設(shè)A種商品每件的進(jìn)價(jià)是X元,則3種商品每件的進(jìn)價(jià)是(X-20)元,由題意得:3000 _ 1800X x-20解得:x = 50,經(jīng)檢驗(yàn),x = 50是原方程的解,且符合題意,5020 = 30,答:A種商品每件的進(jìn)價(jià)是50元,3種商品每件的進(jìn)價(jià)是30元:(2)設(shè)購(gòu)買(mǎi)A種商品d件,則購(gòu)買(mǎi)商品(40 d)件,50d + 30(40-)1560由題意得:40-«,U 240解得:ya<StTd為正整數(shù),. " = 14、15、16、17、商店共有5種進(jìn)貨方案:(3)設(shè)銷售人3兩種商品共獲利$元,由題意得:y = (80-50-7)d+(

33、45-30)(40-a)= (15- 7)d+6OO, 當(dāng)10<n<15時(shí),15-加>0, V隨“的增大而增大,.當(dāng) = 18時(shí),獲利最大,即買(mǎi)18件A商品,22件商品, 當(dāng) /W = 15 時(shí),15-w = 0>y與的值無(wú)關(guān),即(2)問(wèn)中所有進(jìn)貨方案獲利相同, 當(dāng)15<<20時(shí),15-加<0, y隨的增大而減小,.當(dāng)Q = 14時(shí),獲利最大,即買(mǎi)14件A商品,26件商品.【點(diǎn)睛】此題考查一元一次不等式組的應(yīng)用,分式方程的應(yīng)用,解題關(guān)鍵在于根據(jù)題意列岀方程25. 證明見(jiàn)解析.【解析】【分析】欲證明AB=AC,只要i正明ZABC=ZACB即可,根據(jù)&qu

34、ot;HL” i正明RtABDF9RtACM,由全 等三角形的性質(zhì)可證ZEBD=ZFCD I再由等腰三角形的性質(zhì)ZDBC=ZDCB I從而可證 ZABC=Z ACB.【詳解】V DE±AB , DF±AC , ZBED=ZCFD=90 .在 RtBDE 和 RtCDF 中,/BE=CFJ BD二CDRtBDERtCDF ( HL), ZEBD=ZFcd rVBD=CD z ZDBC=ZDCb , ZDBC+ZEBD=ZDCB+ZFCD ,即ZABC=ZACB ,AB=AC .【點(diǎn)睛本題考查全等三角形的判左和性質(zhì),等腰三角形的判左和性質(zhì)等知識(shí),解題的關(guān)鍵是正確 尋找全等三角形

35、解決問(wèn)題,屬于中考常考題型.四、壓軸題Y8026. (1) 56°;(2) y=45 + -;(3) 36°或一0.47【解析】【分析】(1) 根據(jù)等邊對(duì)等角求出等ABC的底角度數(shù),再根據(jù)角平分線的定義得到ZABE的度數(shù),再根據(jù)高的左義得到ZBDC=90°,從而可得ZBPD;(2) 按照(2)中計(jì)算過(guò)程,即可得到ZA與ZEPC的關(guān)系,即可得到結(jié)果;(3) 分若EP=EC,若PC=PE,若CP=CE,三種情況,利用ZABC+ZBCD=90o,以及y= 45 + 解岀X即可【詳解】解:(1) VAB=AC. ZA二44。, ZABC=ZACb= (180-44) &#

36、247;2=68%TCD 丄 AB,AZBDC=90°,TBE 平分ZABC,ZABE=ZCBE=34 ZPO=90-34=56o:(2) V ZA=xX:.ZABC= (18Oo-XO) ÷2= (90- ) %2X由(1)可得:ZABP= - ZABC= (45- ) 0, ZBDC=90°,24XZEPC=y° =ZBPD=90°- (45- ) O= (45 + -) %X即y與X的關(guān)系式為y=45 + -:4(3) 若 EP=EC,則 ZECP=ZEPC=y,X而ZABC=ZACB= 90- , ZABC+ZBCD=90o,2X則有:

37、90-+(90-y)=90% Xy=45+-,XrX 90-+90-. (45 + -) =90224解得:=360;若PC=PE,V 則ZPCE=ZPEC= (180-y) ÷2=90-,由得:ZABC+Z BCD二90°,XXVX 90-+90一一(90 一)二90,又 y=45 + -,2224解得: 若CP=CE,則ZEPC=ZPEOy, ZPCE=I80-2y,由得:ZABC+Z BCD二90°,X 90-+90- (180-2y) =90> 又 y=45 + -,224解得:x=0,不符合,1 OA綜上:當(dāng)是等腰三角形時(shí),ZA的度數(shù)為36。或 &

38、#176;.7【點(diǎn)睛】本題考查了等腰三角形的性質(zhì),二元一次方程組的應(yīng)用,髙與角平分線的左義,有一左難度,關(guān)鍵是找到角之間的等量關(guān)系.27. (1)證明見(jiàn)解析:(2) DE = BD + CE; (3) B(l, 4)【解析】【分析】(1) 證明ABDCAE,根據(jù)全等三角形的性質(zhì)得到AE=BD, AD=CE,結(jié)合圖形解答即可;(2) 根據(jù)三角形內(nèi)角和泄理、平角的立義證明ZABD=ZCAE,證明ABDCAE,根據(jù)全等三角形的性質(zhì)得到AE=BD, AD=CE,結(jié)合圖形解答即可:(3) 根據(jù)AECCFB,得到CF=AE=3, BF=CE=OE-OC=4,根據(jù)坐標(biāo)與圖形性質(zhì)解答.【詳解】(1) 證明:V

39、BD丄直線m, CE丄直線m, ZADB = ZCEA = 90oV Z BAC=90°. ZBAD+Z CAE = 90°VZBAD+ZABD = 90oZCAE= ZABDV1ADB 和ZkCEA 中AABD = ZCAE< ZADB = ZCEAAB = CAADBCEA (AAS)AE = BD, AD=CEde=ae+ad=bd+ce即:DE = BD÷CE(2) 解:數(shù)量關(guān)系:DE = BD+CE理由如下:在AABD 中,ZABD=I80o-ZADB-ZBAD, ZCAE=I80o-ZBAC-ZBAD> ZBDA=ZAEC, ZABd=ZC

40、AE.在ZiABD和MAE中,ZABD=ZCAE< ZBDA= ZAECAB=CAABDCAE (AAS)AE=BD, AD=CElDE=AD+AE=BD+CE:(3) 解:如圖,作AE丄X軸于E, BF丄X軸于F, 由(1)可知,ZiAEC9kCFB,CF二AE=3, BF=CE=OE-OC=4>OF=CF-OC=1>點(diǎn)B的坐標(biāo)為B (1, 4)【點(diǎn)睛本題考查的是全等三角形的判左和性質(zhì)、坐標(biāo)與圖形性質(zhì),掌握全等三角形的判泄左理和 性質(zhì)定理是解題的關(guān)鍵.28. 90°,45°: 20°,30 a + = 29 a- = 2.【解析】【分析】(1)

41、 如圖知 ZEMCI = 1 ZBMCl, ZClMF = IZCIMC 得AEMF = -( ABMCl + ZClMC)可求出解.由圖知 ZEBAI = - ZABCl,ZClBF = - ZClBC 得 ZEBF = I(ZABCl + ZCIBC)可2 2 2求出解.(2) 由圖折疊知ZCMF = ZFMG,乙BME = AEMB,可推岀 (,BMC ZEMF)-ZEMF = ZGMB、,即可求出解.由圖中折疊知ZCMF = ZGMF,ZABE = ZA1BE ,可推出 2(90°-60°)+ ZA1MC1 = 90°,即可求岀解.(3) 如圖-1、2中分

42、別由折疊可知,a- = - a- = + ,即可求得 u + y = 20、a- = 2.【詳解】解:(I)如圖中,. ZEMCl = - ZBMCI, ZClMF = - ZClMC ,2 2. ZEMF = ZEMCi + ZClMF = 1( ZBMC1 + ZClMC) = l×18=9 故答案為90°如圖中,.ZEBA =丄ZABG,ZCF =丄ZClBC,2 2. ZEBF = ZEBG + ZClBF = I(ZACl + ZCIBC) =卜90。= 45°, 故答案為45°.(2)如圖中由折疊可知,ZCMF = ZFMCI, ZBME =

43、 ZEMBi, ZClMF + ZEMB1 - ZEMF = ZCIMBl,:.ZeMF + ZBME - AEMF = ZCiMBi,:.(ZBMC 一 ZEMF) - ZEMF = ZCIMB1,/. 180°-80° =ZC1MB1 =20°;如圖中根據(jù)折疊可知,ZCMF = ZCiMF, ZABE = ZAiBE,. 2ZCMF + IAABE + ZAIMCl = 90° ,2(ZCMF + ZABE) + ZAlMCI = 90°,. 2(90° - ZEMF) + L41MC1 = 90°, 2(90°

44、; - 60°) + ZAIMG= 90°,.ZA1MC1 = 30°:(3) 如圖-1中,由折疊可知,d-0 = 0-y, .a + = 23 :如圖-2中,由折疊可知,"-0 = 0 + y, .a- = 2.CI圖&2【點(diǎn)睛本題考查了圖形的變換中折疊屬全等變換,圖形的角度及邊長(zhǎng)不變及一些角度的計(jì)算問(wèn) 題,突出考查學(xué)生的觀察能力、思維能力以及動(dòng)手操作能力,本題是代數(shù)、幾何知識(shí)的綜 合運(yùn)用典型題目.329. (1) P( - 1, - 1);(2) - :(3) 7(1, 0)或( 2, 0).【解析】【分析】(1) 解析式聯(lián)立構(gòu)成方程組,該方程組的解就是交點(diǎn)坐標(biāo);(2) 利用三角形的而積公式解答:113求得C的坐標(biāo),因?yàn)镾"Ss SW=S"S*U ,所以IP =亍,解 得即可'y = 2x+j = _x_ 2【詳解】 解:(2)令 x=0,得 yi=l» y2= - 2 & (0, 1) I B (Ot - 2),13則 5,=-× (1÷2)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論